Kwak, Tai Keun; Lee, Yang Reflexive property of rings. (English) Zbl 1252.16033 Commun. Algebra 40, No. 4, 1576-1594 (2012). As indicated in the title, this paper studies reflexive properties of rings; in particular, how this property and the related property of idempotent reflexiveness transfer between a ring and related rings (trivial extensions, quotient rings, Dorroh extensions, polynomial rings, power series rings, …). Recall, a ring \(R\) is ‘reflexive’ if for all \(a,b\in R\), \(aRb=0\) implies \(bRa=0\). The ring \(R\) is called ‘idempotent reflexive’ if for all \(a,e\in R\) with \(e\) idempotent, \(aRe=0\) if and only if \(eRa=0\). It is shown that the reflexive condition is Morita invariant. Many examples are provided to illustrate the results but also to show the limitations of others. Reviewer: Stefan Veldsman (Al-Khodh) Cited in 1 ReviewCited in 25 Documents MSC: 16U80 Generalizations of commutativity (associative rings and algebras) 16S36 Ordinary and skew polynomial rings and semigroup rings 16S50 Endomorphism rings; matrix rings 16N60 Prime and semiprime associative rings Keywords:reflexive rings; idempotent reflexive rings; matrix rings; polynomial rings; quasi-Baer rings; semiprime rings PDF BibTeX XML Cite \textit{T. K. Kwak} and \textit{Y. Lee}, Commun. Algebra 40, No. 4, 1576--1594 (2012; Zbl 1252.16033) Full Text: DOI References: [1] DOI: 10.1080/00927879908826596 · Zbl 0929.16032 [2] DOI: 10.1017/S1446788700029190 · Zbl 0292.16009 [3] Birkenmeier G. F., Proc. Biennial Ohio State-Denison Conference 1992 pp 102– (1993) [4] DOI: 10.1081/AGB-100001530 · Zbl 0991.16005 [5] DOI: 10.1112/S0024609399006116 · Zbl 1021.16019 [6] DOI: 10.4153/CMB-1969-052-2 · Zbl 0185.08801 [7] Habeb J. M., Math. J. Okayama Univ. 32 pp 73– (1990) [8] DOI: 10.1016/S0022-4049(01)00053-6 · Zbl 1007.16020 [9] DOI: 10.1016/j.jalgebra.2006.02.032 · Zbl 1104.16015 [10] DOI: 10.4134/BKMS.2009.46.1.135 · Zbl 1180.16018 [11] DOI: 10.3792/pjaa.81.125 · Zbl 1089.16004 [12] Kim J. Y., Kyungpook Math. J. 46 pp 597– (2006) [13] DOI: 10.1006/jabr.1999.8017 · Zbl 0957.16018 [14] DOI: 10.1016/S0022-4049(03)00109-9 · Zbl 1040.16021 [15] DOI: 10.4153/CMB-1971-065-1 · Zbl 0217.34005 [16] Lee T. K., Houston J. Math. 29 pp 583– (2003) [17] DOI: 10.1081/AGB-120037221 · Zbl 1068.16037 [18] DOI: 10.1081/AGB-100002173 · Zbl 1005.16027 [19] DOI: 10.1016/S0022-4049(02)00070-1 · Zbl 1046.16015 [20] DOI: 10.1080/00927878108822678 · Zbl 0468.16024 [21] McConnell J. C., Noncommutative Noetherian Rings (1987) · Zbl 0644.16008 [22] Motais de Narbonne , L. ( 1982 ). Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents. In:Proceedings of the 106th National Congress of Learned Societies(Perpignan, 1981), Paris: Bib. Nat., pp. 71–73 . [23] DOI: 10.3792/pjaa.73.14 · Zbl 0960.16038 [24] DOI: 10.1112/plms/s3-1.1.71 · Zbl 0043.01702 [25] DOI: 10.1090/S0002-9947-1973-0338058-9 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.