# zbMATH — the first resource for mathematics

The dimensions of cyclic symmetry classes of polynomials. (English) Zbl 1290.05156
Let $$H_d[x_1,\dots,x_m]$$ be the set of homogeneous polynomials of degree $$d$$ over the complex numbers with commuting variables. Let $$G$$ be a subgroup of the symmetric group $$S_n$$. And let $$\chi$$ be a complex, irreducible character of $$G$$. Let $$\Gamma^+_{(m,d)}$$ be the partitions of $$d$$ of length $$m$$, and let $$X^\alpha=x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_m^{\alpha_m}$$. Then $$\{X^\alpha\mid\alpha\in\Gamma^+_{(m,d)}\}$$ is a basis for $$H_d[x_1,\dots,x_m]$$.
An inner product for $$H_d$$ is given by $$\langle X^\alpha,X^\beta\rangle=\delta_{\alpha,\beta}$$. And $$G$$ acts on $$H_d[x_1,\dots,x_m]$$ by $$q^\sigma(x_1,\dots,x_m)=q(x_{\sigma^{-1}(1)},\dots,x_{\sigma^{-1}(m)})$$, where $$q\in H_d$$ and $$\sigma\in G$$. This action is extended linearly to the group ring of $$G$$. Then define the operator $$T$$ by $T(G,\chi)=\frac{\chi(1)}{|G|}\sum_{\sigma\in G}\chi(\sigma)\sigma.$ The image of $$H_d$$ under the action of $$T(G,\chi)$$ is the symmetry class of polynomials of degree $$d$$ with respect to $$G$$ and $$\chi$$. $$\{T(G,\chi)\}$$ is a complete set of orthogonal idempotents in the group algebra $$\mathbb C(G)$$, where $$\chi$$ is an irreducible character for $$G$$.
If $$\chi$$ is a linear character of $$G$$, then $$H_d(G,\chi)$$ is the set of all $$q\in H_d$$ such that $$q^\sigma=\chi(\sigma^{-1})q$$. When, for example, $$\chi=1$$, the result is the space of homogeneous symmetric polynomials of degree $$d$$. And when $$\chi=\epsilon$$, one obtains the space of anti-symmetric homogeneous polynomials of degree $$d$$.
The paper contains two theorems:
Theorem 3.1 (in which the $$\dim H_d(G,\chi)$$ is computed in terms of the generalized Ramanujan sum). Let $$G=C_m$$, that is, the cyclic group of order $$m$$. Then $\dim H_d(G,\chi)=\frac1m\sum_{t|m,m|dt}S(l;m;t)\frac{dt}{m}+t-1{{dt+t-1}\choose{t-1}},\quad t=0,1,\dots,m-1.$ Theorem 3.2. If $$G=C_m$$, $$(m,d)=1$$ and $$\chi$$ an irreducible character of $$G$$, then
(a)
$$G_\alpha=\{1\}$$, for all $$\alpha\in\Gamma^+_{(m,d)}$$.
(b)
the set $$\{\sqrt{m}X^{(\alpha,*)}\mid\alpha\in\Delta\}$$ is an orthonormal basis of $$H_d(G,\chi)$$. In particular,
$\dim H_d(G,\chi)=|\Delta|=\frac1m{{dt+m-1}\choose{t-1}}.$

##### MSC:
 05E05 Symmetric functions and generalizations 15A69 Multilinear algebra, tensor calculus
Full Text:
##### References:
  Apostel T. M., Introduction to Analytic Number Theory (1976)  DOI: 10.1007/978-94-010-2196-8 · doi:10.1007/978-94-010-2196-8  DOI: 10.1006/jabr.1997.7376 · Zbl 0924.20005 · doi:10.1006/jabr.1997.7376  Macdonald I. G., Symmetric Functions and Orthogonal Polynomials (1998) · Zbl 0887.05053  Merris R., Multilinear Algebra (1997)  DOI: 10.1007/978-1-4684-9458-7 · doi:10.1007/978-1-4684-9458-7  DOI: 10.1016/j.laa.2010.05.020 · Zbl 1194.05162 · doi:10.1016/j.laa.2010.05.020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.