×

zbMATH — the first resource for mathematics

Symmetry classes of polynomials. (English) Zbl 1338.05272
Summary: Let \(G\) be a subgroup of \(S_m\) and suppose \(\chi\) is an irreducible complex character of \(G\). Let \(H_d(G,\chi)\) be the symmetry class of polynomials of degree \(d\) with respect to \(G\) and \(\chi\). Let \(V\) be an \((d+1)\)-dimensional inner product space over \(\mathbb{C}\) and \(V_\chi(G)\) be the symmetry class of tensors associated with \(G\) and \(\chi\). A monomorphism \(H_d(G,\chi)\to V_\chi(G)\) is given and it is used to obtain necessary and sufficient conditions for nonvanishing \(H_d(G,\chi)\). The nonexistence of o-basis of \(H_d(S_m,\chi^\pi)\) for a certain class of irreducible characters of \(S_m\) is concluded. The dimensions of symmetry classes of polynomials with respect to the irreducible characters of \(S_m\) and \(A_m\) are computed.

MSC:
05E05 Symmetric functions and generalizations
15A69 Multilinear algebra, tensor calculus
20C30 Representations of finite symmetric groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Babaei E., Int. J. Group Theory 3 (4) pp 63– (2014)
[2] Babaei E., Bull. Iranian Math. Soc 40 (4) pp 863– (2014)
[3] DOI: 10.1016/j.laa.2003.11.005 · Zbl 1077.15025 · doi:10.1016/j.laa.2003.11.005
[4] DOI: 10.1080/03081089208818144 · Zbl 0762.15015 · doi:10.1080/03081089208818144
[5] James G., The Representation Theory of the Symmetric Group (1981)
[6] Macdonald I. G., Symmetric Functions and Orthogonal Polynomials (1998) · Zbl 0887.05053
[7] Merris R., Multilinear Algebra (1997)
[8] DOI: 10.1007/978-1-4757-6804-6 · doi:10.1007/978-1-4757-6804-6
[9] DOI: 10.1006/jabr.1999.7932 · Zbl 0935.15024 · doi:10.1006/jabr.1999.7932
[10] DOI: 10.1016/j.laa.2010.05.020 · Zbl 1194.05162 · doi:10.1016/j.laa.2010.05.020
[11] Shahryari M., Algebra Discrete Math 16 (2) pp 287– (2013)
[12] DOI: 10.1142/S0219498813500850 · Zbl 1290.05156 · doi:10.1142/S0219498813500850
[13] DOI: 10.1142/S1793557113500332 · Zbl 1277.05168 · doi:10.1142/S1793557113500332
[14] Zamani Y., Pure Math. Appl 18 (3) pp 357– (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.