×

Lower bounds for local cohomology modules with respect to a pair of ideals. (English) Zbl 1344.13012

Let \(I,J\) be two ideals of a commutative Noetherian ring \(R\) and \(M\) an \(R\)-module. This paper examines some finiteness properties of the modules \(H^i_{I,J}(M); \;i\in\mathbb{N}_0\).
Set \[ W(I,J)=\{\mathfrak p\in\mathrm{Spec } R|I^n\subseteq \mathfrak p+J \text{ for some positive integer } n\} \] and \[ \widetilde{W}(I,J)=\{\mathfrak a|\mathfrak a\;\text{is an ideal of R and } I^n\subseteq \mathfrak a+J \text{ for some positive integer } n\}. \] The functor \(\Gamma_{I,J}\) is a subfunctor of the identity functor that determined by \[ \Gamma_{I,J}(M)=\{x\in M| \mathrm{Supp}_R(Rx)\subseteq W(I,J)\}. \] For each non-negative integer \(i\), the \(i\)-th right derived functor of \(\Gamma_{I,J}\) is denoted by \(H_{I,J}^i\). Theses functors were introduced in [R. Takahashi et al., J. Pure Appl. Algebra 213, No. 4, 582–600 (2009; Zbl 1160.13013)]. Note that the usual local cohomology functor \(H_{I}^i\) corresponds to the case \(J=0\).
Let \(S\) be a Serre subcategory \(S\) of the category of \(R\)-modules that satisfies the condition \(C_I\), \(t\) a non-negative integer and \(N\) a finitely generated \(R\)-module with \(\mathrm{Supp}_RN=V(\mathfrak a)\) for some \(\mathfrak a\in \widetilde{W}(I,J)\). One of the main results of the paper says that if \(\mathrm{Ext}^j_R(N,H^i_{I,J}(M))\in S\) for all \(i<t\) and all \(j<t-i\), then \(H^i_{\mathfrak a}(M)\in S\) for all \(i<t\).
Recall that s Serre subcategory \(S\) of the category of \(R\)-modules is said to satisfy the condition \(C_I\) if for any \(I\)-torsion \(R\)-module \(X\), \((0:_XI)\in S\) implies that \(X\in S\).

MSC:

13D45 Local cohomology and commutative rings
13D07 Homological functors on modules of commutative rings (Tor, Ext, etc.)

Citations:

Zbl 1160.13013
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/j.jalgebra.2008.04.002 · Zbl 1153.13014 · doi:10.1016/j.jalgebra.2008.04.002
[2] Aghapournahr A.J., Bull. Iranian Math. Soc. 37 pp 117– (2011)
[3] J. London Math. Soc. (Ser. 2) 19 pp 402– (1979)
[4] DOI: 10.1090/S0002-9939-2010-10471-9 · Zbl 1210.13018 · doi:10.1090/S0002-9939-2010-10471-9
[5] Chu Q, J. Math. Kyoto Univ. 49 pp 193– (2009)
[6] DOI: 10.1142/S1005386705000209 · Zbl 1065.13007 · doi:10.1142/S1005386705000209
[7] Lotfi Parsa, Eur. J. Pure Appl. Math. 5 pp 55– (2012)
[8] DOI: 10.1016/j.jalgebra.2004.08.037 · Zbl 1093.13012 · doi:10.1016/j.jalgebra.2004.08.037
[9] Sh, Bull. Malays. Math. Sci. Soc. (Ser. 2) 35 pp 877– (2012)
[10] DOI: 10.1080/00927872.2011.631206 · Zbl 1263.13016 · doi:10.1080/00927872.2011.631206
[11] DOI: 10.1016/j.jpaa.2008.09.008 · Zbl 1160.13013 · doi:10.1016/j.jpaa.2008.09.008
[12] Tehranian A, Bull. Iranian Math. Soc. 36 pp 145– (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.