Algebraic properties of bihyperbolic numbers. (English) Zbl 1442.30049

Summary: In this paper, we study the four-dimensional real algebra of bihyperbolic numbers. Under consideration of the spectral representation of the bihyperbolic numbers, we give a partial order of bihyperbolic numbers which allows us to obtain some relations in the ordered vector space of bihyperbolic numbers. Moreover, we state that the set of bihyperbolic numbers form a real Banach algebra with a new defined norm. We introduce conjugates, three hyperbolic valued moduli, real moduli, and multiplicative inverse of the bihyperbolic numbers. We give the concept of the absolute value of a bihyperbolic number which generalizes that of real numbers. Also, we represent the polar form of invertible bihyperbolic numbers.


30G35 Functions of hypercomplex variables and generalized variables
Full Text: DOI


[1] Alpay, D.; Luna-Elizarrarás, Me; Shapiro, M.; Struppa, Dc, Basics of Functional Analysis with Bicomplex Scalars, and Bicomplex Schur Analysis. Springer Briefs in Mathematics, 1-95 (2014), Cham: Springer, Cham · Zbl 1319.46001
[2] Alpay, D.; Luna-Elizarrarás, Me; Shapiro, M., Kolmogorovs axioms for probabilities with values in hyperbolic numbers, Adv. Appl. Clifford Algebr., 27, 2, 913-929 (2017) · Zbl 1388.60011
[3] Banerjee, A.; Deb, R., Bicomplex modules with indefinite inner product, Adv. Appl. Clifford Algebr., 29, 3, 55 (2019) · Zbl 1418.30043
[4] Bory-Reyes, J.; Pérez-Regalado, Co; Shapiro, M., Cauchy type integral in bicomplex setting and its properties, Complex Anal. Oper. Theory, 13, 6, 2541-2573 (2019) · Zbl 1445.30022
[5] Catoni, F.; Boccaletti, D.; Cannata, R.; Catoni, V.; Nichelatti, E.; Zampetti, P., The Mathematics of Minkowski Space-time with an Introduction to Commutative Hypercomplex Numbers, 1-265 (2008), Basel, Boston, Berlin: Birkhauser Verlag, Basel, Boston, Berlin
[6] Catoni, F.; Cannata, R.; Zampetti, P., An introduction to commutative quaternions, Adv. Appl. Clifford Algebr., 16, 1-28 (2006) · Zbl 1207.30073
[7] Cockle, J., On certain functions resembling quaternions and on a new imaginary in algebra, Lond-Dublin-Edinb. Philos. Mag., 3, 33, 435-439 (1848)
[8] Cockle, J., On a new imaginary in algebra, Lond-Dublin-Edinb. Philos. Mag., 3, 34, 37-47 (1849)
[9] Cockle, J., On the symbols of algebra and on the theory of Tessarines, Lond-Dublin-Edinb. Philos. Mag., 3, 34, 406-410 (1849)
[10] Gargoubi, H.; Kossentini, S., \(f-\) algebra structure on hyperbolic numbers, Adv. Appl. Clifford Algebr., 26, 4, 1211-1233 (2016) · Zbl 1403.06028
[11] Halici, S., On bicomplex Fibonacci numbers and their generalization, Models and Theories in Social Systems. Studies in Systems, Decision and Control, 509-524 (2019), Cham: Springer, Cham
[12] Hamilton, Wr, Lectures on Quaternions (1853), Dublin: Hodges and Smith, Dublin
[13] Luna-Elizarrarás, Me; Pèrez-Regalado, Co; Shapiro, M., On the bicomplex GleasonKahane Zelazko theorem, Complex Anal. Oper. Theory, 10, 2, 327-352 (2016) · Zbl 1345.46042
[14] Luna-Elizarrarás, Me; Shapiro, M.; Struppa, Dc; Vajiac, A., Complex Laplacian and derivatives of bicomplex functions, Complex Anal. Oper. Theory, 7, 5, 1675-1711 (2013) · Zbl 1278.30052
[15] Luna-Elizarrarás, Me; Shapiro, M.; Struppa, Dc; Vajiac, A., Bicomplex Holomorphic Functions: The Algebra, Geometry and Analysis of Bicomplex Numbers. Frontiers in Mathematics, 1-231 (2015), Basel: Birkhauser, Basel · Zbl 1345.30002
[16] Luxemburg, Waj; Zaanen, Ac, Riesz Spaces I (1971), Amsterdam: North-Holland Publishing Company, Amsterdam
[17] Olariu, S., Complex Numbers in \(n-\) dimensions. North-Holland Mathematics Studies, 51-148 (2002), Amsterdam, Boston: Elsevier, Amsterdam, Boston
[18] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity (1983), London: Academic Press, London · Zbl 0531.53051
[19] Pogorui, Aa; Rodriguez-Dagnino, Rm; Rodrigue-Said, Rd, On the set of zeros of bihyperbolic polynomials, Complex Var. Elliptic Equ., 53, 7, 685-690 (2008) · Zbl 1158.30300
[20] Price, Gb, An Introduction to Multicomplex Spaces and Functions (1991), New York: Marcel Dekker, New York · Zbl 0729.30040
[21] Rochon, D., A bicomplex Riemann zeta function, Tokyo J. Math., 27, 2, 357-369 (2004) · Zbl 1075.30025
[22] Rochon, D.; Shapiro, M., On algebraic properties of bicomplex and hyperbolic numbers, An. Univ. Oradea Fasc. Mat., 11, 71-110 (2004) · Zbl 1114.11033
[23] Rochon, D.; Tremblay, S., Bicomplex quantum mechanics I. The generalized Schrödinger equation, Adv. Appl. Clifford Algebr., 12, 2, 231-248 (2004) · Zbl 1169.81339
[24] Rochon, D.; Tremblay, S., Bicomplex quantum mechanics II. The Hilbert space, Adv. Appl. Clifford Algebr., 16, 2, 135-157 (2006) · Zbl 1142.81010
[25] Segre, C., Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici (The real representation of complex elements and hyperalgebraic entities), Math. Ann., 40, 413-467 (1892) · JFM 24.0640.01
[26] Sobczyk, G., The hyperbolic number plane, Coll. Math. J., 26, 4, 268-280 (1995)
[27] Téllez-Sánchez, Gy; Bory-Reyes, J., More about Cantor like sets in hyperbolic numbers, Fractals., 25, 5, 1750046 (2017) · Zbl 1375.28019
[28] Yaglom, Im, A Simple Non-Euclidean Geometry and its Physical Basis, 1-326 (1979), New York: Springer-Verlag, New York
[29] Zaanen, Ac, Riesz Spaces II (1983), Amsterdam: North-Holland Publishing Company, Amsterdam
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.