×

Generalized commutative quaternions of the Fibonacci type. (English) Zbl 1479.11040

Summary: Quaternions are a four-dimensional hypercomplex number system discovered by Hamilton in 1843 and next intensively applied in mathematics, modern physics, computer graphics and other fields. After the discovery of quaternions, modified quaternions were also defined in such a way that commutative property in multiplication is possible. That number system called as commutative quaternions is intensively studied and used for example in signal processing. In this paper we define generalized commutative quaternions and next based on them we define and explore Fibonacci type generalized commutative quaternions.

MSC:

11B39 Fibonacci and Lucas numbers and polynomials and generalizations
11B83 Special sequences and polynomials
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akar, M.; Yüce, S.; Şahin, S., On the dual hyperbolic numbers and the complex hyperbolic numbers, J. Comput. Sci. Comput. Math., 8, 1, 1-6 (2018)
[2] \({\text{Akyi}}{\tilde{\text{g}}}{\text{it}}, {\text{ M}}.,\) Kosal, H.H., Tosun, M.: Fibonacci generalized quaternions. Adv. Appl. Clifford Algebr. 24, 631-641 (2014). doi:10.1007/s00006-014-0458-0 · Zbl 1321.11020
[3] Bednarz, U.; Włoch, I.; Wołowiec-Musiał, M., Total graph interpretation of the numbers of the Fibonacci type, J. Appl. Math., 2015, 7 (2015) · Zbl 1347.05058
[4] Bilgin, M.; Ersoy, S., Algebraic properties of bihyperbolic numbers, Adv. Appl. Clifford Algebr., 30, 13 (2020) · Zbl 1442.30049
[5] Cartan, E., Oeuvres Complètes (1953), Paris: Gauthier Villars, Paris
[6] Catoni, F.; Boccaletti, D.; Cannata, R.; Catoni, V.; Nichelatti, E.; Zampetti, P., The Mathematics of Minkowski Space-Time (2008), Basel Boston Berlin: Birkhäuser Verlag AG, Basel Boston Berlin · Zbl 1151.53001
[7] Cockle, J., On a new imaginary in algebra, London Edinburgh Dublin Philos. Mag. J. Sci., 34, 37-47 (1849)
[8] Cockle, J., On certain functions resembling quaternions, and on a new imaginary in algebra, London Edinburgh Dublin Philos. Mag. J. Sci., 33, 435-439 (1848)
[9] Cockle, J., On impossible equations, on impossible quantities, and on tessarines, London Edinburgh Dublin Philos. Mag. J. Sci., 37, 281-283 (1850)
[10] Cockle, J., On the symbols of algebra, and on the theory of tesarines, London Edinburgh Dublin Philos. Mag. J. Sci., 34, 406-410 (1849)
[11] Flaut, C., A Clifford algebra associated to generalized Fibonacci quaternions, Adv. Differ. Equ., 2014, 279 (2014) · Zbl 1417.15030
[12] Flaut, C.; Savin, D., Quaternion algebras and generalized Fibonacci-Lucas quaternions, Adv. Appl. Clifford Algebr., 25, 853-862 (2015) · Zbl 1342.11089
[13] Flaut, C.; Shpakivskyi, V., On generalized Fibonacci quaternions and Fibonacci-Narayana quaternions, Adv. Appl. Clifford Algebr., 23, 673-688 (2013) · Zbl 1330.11009
[14] Horadam, AF, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart., 3, 3, 161-176 (1965) · Zbl 0131.04103
[15] Horadam, AF, Complex Fibonacci Numbers and Fibonacci Quaternions, American Mathematical Monthly, 70, 289-291 (1963) · Zbl 0122.29402
[16] Jafari, M.; Yayli, Y., Generalized quaternions and their algebraic properties, Commun. Fac. Sci. Univ. Ankara Ser. A1 Math. Stat., 64, 1, 15-27 (2015) · Zbl 1354.15022
[17] Kösal, HH; Akyiǧit, M.; Tosun, M., Consimilarity of commutative quaternion matrices, Miskolc Math. Notes, 16, 965-977 (2015) · Zbl 1349.15081
[18] Kösal, HH; Tosun, M., Commutative quaternion matrices, Adv. Appl. Clifford Algebr., 24, 769-779 (2014) · Zbl 1307.15022
[19] Kösal, HH; Tosun, M., Some equivalence relations and results over the commutative quaternions and their matrices, Analele Universitatii “Ovidius” Constanta - Seria Matematica, 25, 3, 125-142 (2017) · Zbl 1424.15053
[20] Kösal, HH; Tosun, M., Universal similarity factorization equalities for commutative quaternions and their matrices, Linear Multilinear Algebr., 67, 926-938 (2019) · Zbl 1411.15024
[21] Lie, S.; Scheffers, MG, Vorlesungen über continuerliche Gruppen, Kap. 21 (1893), Leipzig: Teubner, Leipzig
[22] Pei, S-C; Chang, J-H; Ding, J-J, Commutative reduced biquaternions and their Fourier transform for signal and image processing applications, IEEE Trans. Signal Process., 52, 7, 2012-2031 (2004) · Zbl 1369.94257
[23] Pogorui, AA; Rodríguez-Dagnino, RM; Rodríguez-Said, RD, On the set of zeros of bihyperbolic polynomials, Complex Var. Elliptic Equ., 53, 7, 685-690 (2008) · Zbl 1158.30300
[24] Rochon, D.; Shapiro, M., On algebraic properties of bicomplex and hyperbolic numbers, Anal. Univ. Oradea. Fasc. Math., 11, 71-110 (2004) · Zbl 1114.11033
[25] Scorza, G., Corpi numerici ed Algebre (1921), Messina: (Numerical corps and algebras), Principato, Messina · JFM 48.0163.06
[26] Segre, C., Le Rappresentazioni Reali delle Forme Complesse a Gli Enti Iperalgebrici, Mathematische Annalen, 40, 413-467 (1892) · JFM 24.0640.01
[27] Szynal-Liana, A.; Włoch, I., Hypercomplex numbers of the Fibonacci type (2019), Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów · Zbl 1433.11015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.