zbMATH — the first resource for mathematics

The one-dimensional heat equation. Foreword by Felix E. Browder. (English) Zbl 0567.35001
Encyclopedia of Mathematics and Its Applications, Vol. 23. Menlo Park, California etc.: Addison-Wesley Publishing Company; Cambridge etc.: Cambridge University Press. XXV, 483 p. (1984).
This volume is a valuable contribution to the one-dimensional heat equation. It can serve both as a reference book, as well as a textbook. The author has systematically collected and presented his own research material and that of other research workers, from 1800 to 1982.
He devotes first six chapters in presenting the standard basic material for the heat equation. The exposition is quite systematic and lucid and can be followed by scientists who do not have sufficiently good mathematical background. Some of the interesting topics are topics of free-boundary value problems such as the one-phase Stefan problem, inverse problem, some classes of not-well-posed problems, numerical methods for state-estimation problems and the inhomogeneous heat equation. This volume can be useful for students of mathematics, engineering and physics. It can serve for a variety of courses, such as a course in parabolic partial differential equations, a course in the initial-boundary-value problems for the heat equation, a course in free- boundary-value problems, a course in parameter identification and several others.
Reviewer: B.R.Bhonsle

35-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to partial differential equations
35K05 Heat equation
35R30 Inverse problems for PDEs
80A20 Heat and mass transfer, heat flow (MSC2010)
35B10 Periodic solutions to PDEs
35C05 Solutions to PDEs in closed form
35C10 Series solutions to PDEs
35C15 Integral representations of solutions to PDEs
35R25 Ill-posed problems for PDEs
35R35 Free boundary problems for PDEs