zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An introduction to Hilbert space. (English) Zbl 0645.46024
Cambridge Mathematical Textbooks. Cambridge (UK) etc.: Cambridge University Press. 239 p. £ 9.95/pbk (1988).
The present book is intended primarily for an undergraduate audience. The authors believes that a sound grounding in Hilbert space theory is the best way how to approach functional analysis. It consists of sixteen chapters dealing with the following topics: Inner product spaces, Normed spaces, Hilbert and Banach spaces, Orthogonal expansions, Classical Fourier series, Dual spaces, Linear operators, Compact operators, Sturm- Liouville systems, Green’s functions, Eigenfunction expansions, Positive operators and contractions, Hardy spaces, Approximation by analytic functions and approximation by meromorphic functions. This last chapter and the one concerning the positive operators may be of interest to electrical engineers, since some recent developments, particularly in control and filter design, require familiarity with this aspect of operator theory. The book presupposes introductory courses in real analysis, linear algebra, topology of metric spaces and elementary complex analysis. The chapter concerning Hardy spaces requires a certain familiarity with Lebesgue measure.
Reviewer: L.Janos

46C05Hilbert and pre-Hilbert spaces: geometry and topology
46-01Textbooks (functional analysis)
46C99Inner product spaces, Hilbert spaces
47B06Riesz operators; eigenvalue distributions; approximation numbers, $s$-numbers etc.of operators
34L99Ordinary differential operators
47B15Hermitian and normal operators
41A30Approximation by other special function classes
47A10Spectrum and resolvent of linear operators
47A70Eigenfunction expansions of linear operators; rigged Hilbert spaces
46B03Isomorphic theory (including renorming) of Banach spaces