zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Arithmetical functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties. (English) Zbl 0807.11001
London Mathematical Society Lecture Note Series. 184. Cambridge: Cambridge University Press. xix, 367 p. £ 25.00; $ 39.95 (1994).
This book treats diverse aspects of arithmetical functions that typically do not fall into the category of analytic or probabilistic number theory. After an introductory chapter, chapters II--III treat elementary ways to estimate the mean values of arithmetical functions. Highlights: Wirsing’s mean-value theorem for nonnegative multiplicative functions; Daboussi and Delange’s theorem on the vanishing of the Fourier coefficients of multiplicative functions and its consequence that $f(n)+ \alpha n$ is uniformly distributed for any irrational $\alpha$ and additive function $f$; Daboussi’s elementary proof of the prime number theorem; Saffari and Daboussi’s results on the direct multiplicative decompositions of $\bbfN$. The bulk of the book, chapters IV--VIII, is devoted to the study of different classes of almost periodic functions. One starts with the classes of periodic functions and even functions (here it means a function with the property that $f(n)$ depends only on the $\text{gcd}(m,n)$ for a certain fixed $m$), and forms the completion in certain seminorms. Then the inclusion relations between the arising classes are described, the additive and multiplicative functions in these classes are characterized, Ramanujan expansions and limiting distributions are studied. From the various interesting results we quote only one: a power series $\sum f(n) x\sp n$ formed with an arithmetical function $f\in {\cal B}\sp 2$ is non-continuable beyond the unit circle if infinitely many Ramanujan coefficients of $f$ do not vanish. Chapter IX presents two important mean value results for multiplicative functions; Wirsing’s theorem with Hildebrand’s elementary proof, and Halász’ theorem with Daboussi and Indlekofer’s proof. The book comes complete with exercises, graphs of functions (which I found a welcome addition to the text), and photos of mathematicians. This monograph presents certain aspects of arithmetical functions which, with few exceptions, have not been available in book form. It does not replace the existing works (e.g. {\it P. D. T. A. Elliott’s} “Probabilistic number theory”), but it is a very useful addition to them. To understand the book a basic knowledge of number theory and analysis is required; a few less known facts from other branches are given in an appendix.

MSC:
11-02Research monographs (number theory)
11N37Asymptotic results on arithmetic functions
11K65Arithmetic functions (probabilistic number theory)
11K70Harmonic analysis and almost periodicity