zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A quadratic field which is Euclidean but not norm-Euclidean. (English) Zbl 0817.11047
The author uses earlier methods of {\it E. S. Barnes} and {\it H. P. F. Swinnerton-Dyer} [Acta Math. 87, 259-323 (1952; Zbl 0046.276)] to prove with the help of a computer that the ring $\bbfZ[ {{1+ \sqrt {69}} \over 2}]$ is Euclidean. This is the first example of a quadratic number field shown to be Euclidean but not norm-Euclidean.
Reviewer: M.Pohst (Berlin)

11R11Quadratic extensions
11Y40Algebraic number theory computations
11A05Multiplicative structure of the integers
Full Text: DOI EuDML
[1] E.S. Barnes and H.P.F. Swinnerton-Dyer,The Inhomogeneous Minima of Binary Quadratic Forms, Acta Math.87 (1952), 259--323 · Zbl 0046.27601 · doi:10.1007/BF02392288
[2] D.A. Clark,The Euclidean Algorithm for Galois Extensions of the Rational Numbers, Ph.D. Thesis, McGill University, Montréal, 1992
[3] D. A. Clark and M.R. Murty, The Euclidean Algorithm in Galois Extensions of $\mathbb{Q}$, (to appear) · Zbl 0814.11049
[4] L.E. Dickson,Algebren und ihre Zahlentheorie, Orell Füssli Verlag, Zürich und Leipzig, 1927
[5] P.G. Lejeune Dirichlet (ed. R. Dedekind),Vorlesungen über Zahlentheorie, Vieweg, Braunschweig, 1893 · Zbl 0376.10001
[6] O. Perron,Quadratische Zahlkörpern mit Euklidischem Algorithmus, Math. Ann.107 (1932), 489--495 · Zbl 0005.38703 · doi:10.1007/BF01448906
[7] P. Weinberger,On Euclidean Rings of Algebraic Integers, Proc. Symp. Pure Math.24 (1973), 321--332 · Zbl 0287.12012