zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Polynomial mappings. (English) Zbl 0829.11002
Lecture Notes in Mathematics. 1600. Berlin: Springer-Verlag. vi, 130 p. DM 34.00; öS 265.20; sFr 34.00 (1995).
Let $R$ be an integral domain and $K$ its quotient field. The main purpose of the first part of the book is to study the ring $\text{Int} (R) = \{f \in K [X]$; $f(R) \subset R\}$. It is well known (G. Pólya, 1915) that, when $R = \bbfZ$, $\text{Int} (R)$ is a free $R$-module generated by a family $\{h_n\}_{n \in \bbfN}$ of polynomials with $\deg h_n = n$ (these are in fact the binomial polynomials). An open problem is the determination of all rings $R$ with this property. The author discusses this problem, in particular in the case when $R = I_K$ is the ring of integers of a number field $K$. Another interesting question is about the algebraic properties of $\text{Int} (R)$: noetherianity, Skolem property, maximal and prime ideals, Krull dimension, Prüfer property, etc. This first part also deals with the values of the successive derivatives of polynomials or of rational functions. The second part is devoted to the study of fully invariant subsets of a field by polynomial mappings: if $f \in \bbfQ [X]$ and $S \subset \bbfQ$ satisfy $f(S) = S$, then either $S$ is finite or $\deg f = 1$. The aim of study is to determine the fields with this property or its analogue in the case of several variables. In particular, is this property stable by purely transcendental extension (yes) or by finite extension? The last chapter deals with polynomial cycles: by a theorem of I. N. Baker (1960) every polynomial of degree $\ge 2$ in $\bbfC [X]$ has cycles of every order with at most one exception. The author considers this question in algebraic number fields. This nice, short (130 pages) but dense book makes a sound review of the question. As often as possible, concise proofs are given. More technical results or related questions are described and references are given; the text is well supplemented by many exercises given at the end of each chapter. The appendix states a list of 21 open problems and the book contains 11 pages of bibliographical references (from 1895 to 1994). It is interesting to have such a synthesis on questions which are often studied but scattered in the literature.

11-02Research monographs (number theory)
11C08Polynomials (number theory)
12E05Polynomials over general fields
13-02Research monographs (commutative algebra)
13B25Polynomials over commutative rings
11T06Polynomials over finite fields or rings
13F20Polynomial rings and ideals
14E05Rational and birational maps
11R09Polynomials over global fields
Full Text: DOI