zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Galois module structure. (English) Zbl 0830.11042
Providence, RI: AMS. vii, 207 p. $ 70.00 (1994).
Over the last twenty years, the theory of Galois module structure has seen substantial progress. Originally it dealt with the study of $G(L/ K)$-modules ${\cal O}_L$ for a Galois extension $L/K$ of global number fields. Fröhlich’s conjecture states that the class of ${\cal O}_L$ in the class group $Cl (\bbfZ_K [G (L/K)])= K_0 (\bbfZ[G(L/K)])/\{ \text{free modules}\}$ for a tamely ramified extension $L/K$ coincides with the class of an analytic invariant $W_{L/K}$ related with the Artin root number. It was {\it M. J. Taylor} [Invent. Math. 63, 41-79 (1981; Zbl 0469.12003)] who proved this conjecture in 1981. Later T. Chinburg stated several generalizations of this conjecture using Chinburg invariants $\Omega (L/ K,i)$. For example, Fröhlich-Chinburg’s conjecture states that for a Galois extension $L/K$ the second Chinburg invariant $\Omega (L/K, 2)\in Cl( \bbfZ[G(L/K) ])$ coincides with the class of $W_{L/K}$. Very different from the book of {\it A. Fröhlich} [Galois module structure of algebraic integers, Springer-Verlag (1983; Zbl 0501.12012)], this book is devoted to discussions of these conjectures and corresponding techniques. It is based on a graduate course given by the author at the Fields Institute in 1993. There are seven chapters and several dozen exercises. The first chapter contains many preliminaries in a brief form. In particular, a method of explicit Brauer induction, developed by the author and R. Boltje, is described there. It seems to be very useful in this subject in numerous applications throughout the book. The second chapter deals with the class group of an integral group-ring and the second Chinburg invariant. The Fröhlich-Chinburg conjecture is verified for some subextensions of cyclotomic extensions using $p$-adic $L$-functions. The third chapter introduces logarithmic technique which was originally discovered by M. J. Taylor and R. Oliver. Here the explicit Brauer induction provides a simple construction of the group- ring logarithm. Based on a new approach of congruence technology the fourth chapter exposes a sketch of the M. J. Taylor proof of the Fröhlich conjecture in the special case of a $p$-group of odd order. Chapter V deals with an almost complete proof of D. Holland’s result that the Fröhlich-Chinburg conjecture holds in the class-group of the maximal order. For the proof a method of canonical factorization due to Holland is described. The sixth chapter is devoted to quaternion considerations of the Fröhlich-Chinburg conjecture, and the seventh chapter contains a construction of new class-group invariants of the Chinburg type arising from cohomological studies of the higher algebraic $K$-groups of rings of $S$-integers. The book offers a fairly fast presentation of important results in Galois module structure. The subject is growing, and many new results and conjectures appeared after its publication. Being the first book on this thriving subject of such scope, it will be very useful for specialists inside and outside of this subject, as well as for graduate students.

11R33Integral representations related to algebraic numbers
11-02Research monographs (number theory)
11R70$K$-theory of global fields
11S25Galois cohomology for local fields
11R29Class numbers, class groups, discriminants
11S31Class field theory for local fields; $p$-adic formal groups
11R34Galois cohomology for global fields
19F27Étale cohomology, higher regulators, zeta and $L$-functions ($K$-theory)
11S40Zeta functions and $L$-functions of local number fields