zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On Giuga’s conjecture. (English) Zbl 0845.11004
{\it G. Giuga} [Ist. Lombardo Sci. Lett., Rend., Cl. Sci. Mat. Natur. 83, 511-518 (1951; Zbl 0045.01801)] conjectured that no composite number $n$ satisfies the congruence $$1^{- 1}+ 2^{n- 1}+\cdots+ (n- 1)^{n- 1}\equiv -1\pmod n.\tag{$*$}$$ Since for prime numbers $n$ $(*)$ obviously holds, the truth of Giuga’s conjecture would provide a characterization of primes. In the present paper, the author discusses consequences and variations of the congruence above. He points out some relations to Bernoulli numbers and Euler, Fermat and Wilson quotients.
11A07Congruences; primitive roots; residue systems
11A41Elementary prime number theory
Full Text: DOI EuDML
[1] T. Agoh, On Bernoulli and Euler numbers, manuscripta math.61 (1988), 1--10 · Zbl 0648.10007 · doi:10.1007/BF01153577
[2] T. Agoh, On Fermat and Wilson quotients, Preprint (1995) · Zbl 0869.11002
[3] T. Agoh, K. Dilcher and L. Skula, Fermat and Wilson quotients for composite moduli, Preprint (1995) · Zbl 1024.11003
[4] W.R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math.140 (1994), 1--20 · Zbl 0818.11024 · doi:10.2307/2118540
[5] E. Bedocchi, Nota ad uma congettura sui numeri primi, Riv. Mat. Univ. Parma11 (1985), 229--236
[6] D. Borwein, J.M. Borwein, P.B. Borwein and R. Girgensohn, Giuga’s conjecture on primality, Preprint (1994) · Zbl 0860.11003
[7] G. Giuga, Su una presumibile proprietà caratteristica dei numeri primi, Ist. Lombardo Sci. Lett. Rend. Cl. Sci. Mat. Nat.83 (1950), 511--528 · Zbl 0045.01801
[8] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math.39 (1938), 350--360 · Zbl 0019.00505 · doi:10.2307/1968791
[9] M. Lerch, Zur Theorie des Fermatschen Quotientena p/p=q(a), Math. Annalen60 (1905), 471--490 · Zbl 36.0266.03 · doi:10.1007/BF01561092
[10] M. Lerch Sur les théorèmes de Sylvester concernant le quotient de Fermat, C. R. Acad. Sci. Paris142 (1906), 35--38 · Zbl 37.0225.02
[11] P. Ribenboim, The book of prime number records, Springer-Verlag, New York, 1988 · Zbl 0642.10001
[12] P. Ribenboim, The little book of big primes, Springer-Verlag, New York, 1991 · Zbl 0734.11001
[13] W. Sierpiński, Elementary number theory, Hafner, New York, 1964