zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sparsely totient numbers. (English) Zbl 0871.11060
{\it D. W. Masser} and {\it P. Shiu} [Pac. J. Math. 121, 407-426 (1986; Zbl 0538.10006)] called $n$ a sparsely totient number if $\phi(m)>\phi(n)$ for all $m>n$. Various interesting properties of such numbers were established. For example, if $P(n)$ is the largest prime divisor of $n$, then $\liminf P(n)/\log n=1$. Although they conjectured that $\limsup P(n)/\log n=2$, they only managed to prove that $P(n)\ll\log^2n$. Subsequently {\it G. Harman} [Glasg. Math. J. 33, 349-358 (1991; Zbl 0732.11049)] made significant progress by means of the estimation of exponential sums to prove that $P(n)\ll \log^\delta n$ holds for an exponent $\delta>122/65$. Making use of work of {\it E. Fouvry} and {\it H. Iwaniec} [J. Number Theory 33, 311-333 (1989; Zbl 0687.10028)] on exponential sums, the authors make further improvement by showing that $\delta=37/20$ is admissible. The proof amounts to showing that if $v^\delta<x<v^2$ then there are $\gg x/v\log x$ primes $p$ in the interval $2v<p<3v$ with the fractional parts $\{x/p\}$ exceeding $1-x/16v^2$.
MSC:
11N36Applications of sieve methods
11N25Distribution of integers with specified multiplicative constraints
11L07Estimates on exponential sums
WorldCat.org
Full Text: DOI Numdam EuDML
References:
[1] Baker ( R.C. ) . - The greatest prime factor of the integers in an interval , Acta Arithmetica 47 ( 1986 ), pp. 193 - 231 . Article | MR 870666 | Zbl 0553.10035 · Zbl 0553.10035 · eudml:206027
[2] Baker ( R.C. ) and Harman .- Numbers with a large prime factor , Acta Arith. 73 ( 1995 ), pp. 119 - 145 . Article | MR 1358192 | Zbl 0834.11037 · Zbl 0834.11037 · eudml:206814
[3] Baker ( R.C. ), Harman and Rivat ( J. ) .- Primes of the form [nc] , J. of Number Theory , 50 ( 1995 ), pp. 261 - 277 . MR 1316821 | Zbl 0822.11062 · Zbl 0822.11062 · doi:10.1006/jnth.1995.1020
[4] Fouvry ( E. ) and Iwaniec ( H. ) . - Exponential sums with monomials , J. Number Theory 33 ( 1989 ), pp. 311 - 333 . MR 1027058 | Zbl 0687.10028 · Zbl 0687.10028 · doi:10.1016/0022-314X(89)90067-X
[5] Harman ( G. ) .- On the distribution of \alpha p modulo one , J. London Math. Soc. 27 ( 1983 ), pp. 9 - 18 . MR 686496 | Zbl 0504.10018 · Zbl 0504.10018 · doi:10.1112/jlms/s2-27.1.9
[6] Harman ( G. ) . - On sparsely totient numbers , Glasgow Math. J. 33 ( 1991 ), pp. 349 - 358 . MR 1127527 | Zbl 0732.11049 · Zbl 0732.11049 · doi:10.1017/S0017089500008417
[7] Iwaniec ( H. ) and Laborde ( M. ) .- P2 in short intervals , Ann. Inst. Fourier, Grenoble , 31 ( 1981 ), pp. 37 - 56 . Numdam | MR 644342 | Zbl 0472.10048 · Zbl 0472.10048 · doi:10.5802/aif.848 · numdam:AIF_1981__31_4_37_0 · eudml:74517
[8] Liu ( H.-Q. ) .- The greatest prime factor of the integers in an interval , Acta Arith. , 65 ( 1993 ), pp. 301 - 328 . Article | MR 1259341 | Zbl 0797.11071 · Zbl 0797.11071 · eudml:206583
[9] Masser ( D.W. ) and Shiu ( P. ) . - On sparsely totient numbers , Pacific J. Math. 121 ( 1986 ), pp. 407 - 426 . Article | MR 819198 | Zbl 0538.10006 · Zbl 0538.10006 · doi:10.2140/pjm.1986.121.407 · http://minidml.mathdoc.fr/cgi-bin/location?id=00069828
[10] Wu ( J. ) .- P2 dans les petits intervalles , Séminaire de Théorie des Nombres de Paris (1989-90) , Birkhaüser . MR 1476739 | Zbl 0743.11050 · Zbl 0743.11050