zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. (English) Zbl 0880.60076
Summary: The two-parameter Poisson-Dirichlet distribution, denoted $\text{PD}(\alpha,\theta)$, is a probability distribution on the set of decreasing positive sequences with sum 1. The usual Poisson-Dirichlet distribution with a single parameter $\theta$, introduced by Kingman, is $\text{PD}(0,\theta)$. Known properties of $\text{PD}(0,\theta)$, including the Markov chain description due to Vershik, Shmidt and Ignatov, are generalized to the two-parameter case. The size-biased random permutation of $\text{PD}(\alpha,\theta)$ is a simple residual allocation model proposed by Engen in the context of species diversity, and rediscovered by Perman and the authors in the study of excursions of Brownian motion and Bessel processes. For $0<\alpha< 1$, $\text{PD}(\alpha,0)$ is the asymptotic distribution of ranked lengths of excursions of a Markov chain away from a state whose recurrence time distribution is in the domain of attraction of a stable law of index $\alpha$. Formulae in this case trace back to work of Darling, Lamperti and Wendel in the 1950s and 1960s. The distribution of ranked lengths of excursions of a one-dimensional Brownian motion is $\text{PD}(1/2,0)$, and the corresponding distribution for a Brownian bridge is $\text{PD}(1/2,1/2)$. The $\text{PD}(\alpha,0)$ and $\text{PD}(\alpha,\alpha)$ distributions admit a similar interpretation in terms of the ranked lengths of excursions of a semistable Markov process whose zero set is the range of a stable subordinator of index $\alpha$.

MSC:
60J99Markov processes
60G57Random measures
60E99Distribution theory in probability theory
WorldCat.org
Full Text: DOI
References:
[1] Aldous, D. (1985). Exchangeability and related topics. École d’ Été de Probabilités de SaintFlour XII. Lecture Notes in Math. 1117. Springer, Berlin. · Zbl 0562.60042
[2] Aldous, D. J. and Eagleson, G. K. (1978). On mixing and stability of limit theorems. Ann. Probab. 6 325-331. · Zbl 0376.60026 · doi:10.1214/aop/1176995577
[3] Aldous, D. and Pitman, J. (1994). Brownian bridge asymptotics for random mappings. Random Structures Algorithms 5 487-512. · Zbl 0811.60057 · doi:10.1002/rsa.3240050402
[4] Arov, D. and Bobrov, A. (1960). The extreme terms of a sample and their role in the sum of independent variables. Theory Probab. Appl. 5 377-396. · Zbl 0098.11202 · doi:10.1137/1105038
[5] Barlow, M., Pitman, J. and Yor, M. (1989). Une extension multidimensionnelle de la loi de l’arc sinus. In Séminaire de Probabilités XXIII. Lecture Notes in Math. 1372 294-314. Springer, Berlin. · Zbl 0738.60072 · numdam:SPS_1989__23__294_0 · eudml:113681
[6] Billingsley, P. (1972). On the distribution of large prime factors. Period. Math. Hungar. 2 283-289. · Zbl 0242.10033 · doi:10.1007/BF02018667
[7] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Encylopedia of Mathematics and Its Applications: Regular Variation. Cambridge Univ. Press. · Zbl 0617.26001
[8] Blackwell, D. and MacQueen, J. (1973). Ferguson distributions via Pólya urn schemes. Ann. Statist. 1 353-355. · Zbl 0276.62010 · doi:10.1214/aos/1176342372
[9] Brockwell, P. J. and Brown, B. M. (1978). Expansion for the positive stable laws. Z. Wahrsch. Verw. Gebiete 45 213-224. · Zbl 0398.60014 · doi:10.1007/BF00535303
[10] Chung, K. and Erd ös, P. (1952). On the application of the Borel-Cantelli Lemma. Trans. Amer. Math. Soc. 72 179-186. JSTOR: · Zbl 0046.35203 · doi:10.2307/1990661 · http://links.jstor.org/sici?sici=0002-9947%28195201%2972%3A1%3C179%3AOTAOTB%3E2.0.CO%3B2-N&origin=euclid
[11] Csáki, E., Erd ös, P. and Revesz, P. (1985). On the length of the longest excursion. Z. Wahrsch. Verw. Gebiete 68 365-382. · Zbl 0537.60062 · doi:10.1007/BF00532646
[12] Darling, D. (1952). The influence of the maximum term in the addition of independent random variables. Trans. Amer. Math. Soc. 73 95-107. JSTOR: · Zbl 0047.37502 · doi:10.2307/1990824 · http://links.jstor.org/sici?sici=0002-9947%28195207%2973%3A1%3C95%3ATIOTMT%3E2.0.CO%3B2-I&origin=euclid
[13] Dickman, K. (1930). On the frequency of numbers containing prime factors of a certain relative magnitude. Arkiv. for Matematik Astronomi och Fysik 22 1-14. · Zbl 56.0178.04
[14] Donnelly, P. (1986). Partition structures, Pólya urns, the Ewens sampling formula, and the ages of alleles. Theoret. Population Biol. 30 271-288. · Zbl 0608.92005 · doi:10.1016/0040-5809(86)90037-7
[15] Donnelly, P. and Grimmett, G. (1993). On the asymptotic distribution of large prime factors. J. London Math. Soc. 2 47 395-404. · Zbl 0839.11039 · doi:10.1112/jlms/s2-47.3.395
[16] Donnelly, P. and Joyce, P. (1989). Continuity and weak convergence of ranked and sizebiased permutations on the infinite simplex. Stochastic Process. Appl. 31 89-103. · Zbl 0694.60009 · doi:10.1016/0304-4149(89)90104-X
[17] Engen, S. (1978). Stochastic Abundance Models with Emphasis on Biological Communities and Species Diversity. Chapman and Hall, London. · Zbl 0429.62075
[18] Evans, S. and Pitman, J. (1996). Construction of Markovian coalescents. Technical Report 465, Dept. Statistics, Univ. California, Berkeley. · Zbl 0906.60058
[19] Ewens, W. (1972). The sampling theory of selectively neutral alleles. Theoret. Population Biol. 3 87-112. · Zbl 0245.92009 · doi:10.1016/0040-5809(72)90035-4
[20] Ewens, W. (1988). Population genetics theory-the past and the future. In Mathematical and Statistical Problems in Evolution (S. Lessard, ed.). Univ. Montreal Press. · Zbl 0655.62104
[21] Ewens, W. and Tavaré, S. (1995). The Ewens sampling formula. In Multivariate Discrete Distributions (N. S. Johnson, S. Kotz and N. Balakrishnan, eds.). Wiley, New York.
[22] Ferguson, T. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209-230. · Zbl 0255.62037 · doi:10.1214/aos/1176342360
[23] Getoor, R. (1963). The asymptotic distribution of the number of zero free intervals of a stable process. Trans. Amer. Math. Soc. 106 127-138. JSTOR: · Zbl 0114.08401 · doi:10.2307/1993718 · http://links.jstor.org/sici?sici=0002-9947%28196301%29106%3A1%3C127%3ATADOTN%3E2.0.CO%3B2-3&origin=euclid
[24] Gon charov, V. (1962). On the field of combinatory analysis. Amer. Math. Soc. Transl. 19 1-46. · Zbl 0129.31503
[25] Griffiths, R. C. (1979). Exact sampling distributions from the infinite neutral alleles models. Adv. in Appl. Probab. 11 326-354. JSTOR: · Zbl 0406.92016 · doi:10.2307/1426843 · http://links.jstor.org/sici?sici=0001-8678%28197906%2911%3A2%3C326%3AESDFTI%3E2.0.CO%3B2-Y&origin=euclid
[26] Griffiths, R. C. (1988). On the distribution of points in a Poisson Dirichlet process. J. Appl. Probab. 25 336-345. JSTOR: · Zbl 0691.92009 · doi:10.2307/3214441 · http://links.jstor.org/sici?sici=0021-9002%28198806%2925%3A2%3C336%3AOTDOPI%3E2.0.CO%3B2-I&origin=euclid
[27] Hansen, J. (1994). Order statistics for decomposable combinatorial structures. Random Structures Algorithms 5 517-533. · Zbl 0807.60012 · doi:10.1002/rsa.3240050404
[28] Hoppe, F. M. (1984). Pólya-like urns and the Ewens sampling formula. J. Math. Biol. 20 91-94. · Zbl 0547.92009 · doi:10.1007/BF00275863
[29] Hoppe, F. M. (1986). Size-biased filtering of Poisson-Dirichlet samples with an application to partition structures in genetics. J. Appl. Probab. 23 1008-1012. JSTOR: · Zbl 0613.92016 · doi:10.2307/3214473 · http://links.jstor.org/sici?sici=0021-9002%28198612%2923%3A4%3C1008%3ASFOPSW%3E2.0.CO%3B2-Z&origin=euclid
[30] Hoppe, F. M. (1987). The sampling theory of neutral alleles and an urn model in population genetics. J. Math. Biol. 25 123-159. · Zbl 0636.92007 · doi:10.1007/BF00276386
[31] Horowitz, J. (1971). A note on the arc-sine law and Markov random sets. Ann. Math. Statist. 42 1068-1074. · Zbl 0218.60080 · doi:10.1214/aoms/1177693333
[32] Horowitz, J. (1972). Semilinear Markov processes, subordinators and renewal theory. Z. Wahrsch. Verw. Gebiete 24 167-193. · Zbl 0251.60052 · doi:10.1007/BF00532529
[33] Hu, Y. and Shi, Z. (1995). Extreme lengths in Brownian and Bessel excursions. Preprint, Laboratoire de Probabilités, Univ. Paris VI. · Zbl 0907.60036
[34] Ignatov, T. (1982). On a constant arising in the theory of symmetric groups and on Poisson- Dirichlet measures. Theory Probab. Appl. 27 136-147. · Zbl 0559.60046 · doi:10.1137/1127012
[35] Kallenberg, O. (1973). Canonical representations and convergence criteria for processes with interchangeable increments. Z. Wahrsch. Verw. Gebiete 27 23-36. · Zbl 0261.60040 · doi:10.1007/BF00736005
[36] Kerov, S. (1995). Coherent random allocations and the Ewens-Pitman formula. PDMI preprint, Steklov Math. Institute, St. Petersburg.
[37] Kingman, J. (1993). Poisson Processes. Clarendon, Oxford. · Zbl 0771.60001
[38] Kingman, J. F. C. (1975). Random discrete distributions. J. Roy. Statist. Soc. Ser. B 37 1-22. JSTOR: · Zbl 0331.62019 · http://links.jstor.org/sici?sici=0035-9246%281975%2937%3A1%3C1%3ARDD%3E2.0.CO%3B2-W&origin=euclid
[39] Knight, F. (1985). On the duration of the longest excursion. In Seminar on Stochastic Processes (E. Çinlar, K. Chung and R. Getoor, eds.) 117-148. Birkhäuser, Basel.
[40] K üchler, U. and Lauritzen, S. L. (1989). Exponential families, extreme point models and minimal space-time invariant functions for stochastic processes with stationary and independent increments. Scand. J. Statist. 16 237-261. · Zbl 0697.62008
[41] Lamperti, J. (1958). An occupation time theorem for a class of stochastic processes. Trans. Amer. Math. Soc. 88 380-387. JSTOR: · Zbl 0228.60046 · doi:10.2307/1993222 · http://links.jstor.org/sici?sici=0002-9947%28195807%2988%3A2%3C380%3AAOTTFA%3E2.0.CO%3B2-U&origin=euclid
[42] Lamperti, J. (1961). A contribution to renewal theory. Proc. Amer. Math. Soc. 12 724-731. JSTOR: · Zbl 0099.34801 · doi:10.2307/2034865 · http://links.jstor.org/sici?sici=0002-9939%28196110%2912%3A5%3C724%3AACTRT%3E2.0.CO%3B2-U&origin=euclid
[43] Lamperti, J. (1962). An invariance principle in renewal theory. Ann. Math. Statist. 33 685- 696. · Zbl 0106.33902 · doi:10.1214/aoms/1177704590
[44] Lamperti, J. (1972). Semi-stable Markov processes. I. Z. Wahrsch. Verw. Gebiete 22 205-225. · Zbl 0274.60052 · doi:10.1007/BF00536091
[45] LePage, R., Woodroofe, M. and Zinn, J. (1981). Convergence to a stable distribution via order statistics. Ann. Probab. 9 624-632. · Zbl 0465.60031 · doi:10.1214/aop/1176994367
[46] Lévy, P. (1939). Sur certains processus stochastiques homog enes. Compositio Math. 7 283- 339. · Zbl 0022.05903 · numdam:CM_1940__7__283_0 · eudml:88744
[47] Lukacs, E. (1955). A characterization of the gamma distribution. Ann. Math. Statist. 26 319-324. · Zbl 0065.11103 · doi:10.1214/aoms/1177728549
[48] McCloskey, J. W. (1965). A model for the distribution of individuals by species in an environment. Ph.D. thesis, Michigan State Univ.
[49] Molchanov, S. A. and Ostrovski, E. (1969). Symmetric stable processes as traces of degenerate diffusion processes. Theory Probab. Appl. 14 128-131. · Zbl 0281.60091 · doi:10.1137/1114012
[50] Perman, M. (1993). Order statistics for jumps of normalized subordinators. Stochastic Process Appl. 46 267-281. · Zbl 0777.60070 · doi:10.1016/0304-4149(93)90007-Q
[51] Perman, M., Pitman, J. and Yor, M. (1992). Size-biased sampling of Poisson point processes and excursions. Probab. Theory Related Fields 92 21-39. · Zbl 0741.60037 · doi:10.1007/BF01205234
[52] Pitman, J. (1992). Partition structures derived from Brownian motion and stable subordinators. Bernoulli. · Zbl 0882.60081 · doi:10.2307/3318653
[53] Pitman, J. (1992). The two-parameter generalization of Ewens’ random partition structure. Technical Report 345, Dept. Statistics, Univ. California, Berkeley.
[54] Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Probab. Theory Related Fields 102 145-158. · Zbl 0821.60047 · doi:10.1007/BF01213386
[55] Pitman, J. (1995). Species sampling models. Unpublished manuscript.
[56] Pitman, J. (1996). Random discrete distributions invariant under size-biased permutation. Adv. in Appl. Probab. 28 525-539. JSTOR: · Zbl 0853.62018 · doi:10.2307/1428070 · http://links.jstor.org/sici?sici=0001-8678%28199606%2928%3A2%3C525%3ARDDIUS%3E2.0.CO%3B2-M&origin=euclid
[57] Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. In Statistics, Probability and Game Theory. Papers in Honor of David Blackwell. IMS, Hayward, CA. · doi:10.1214/lnms/1215453576
[58] Pitman, J. (1996). The additive coalescent, random trees, and Brownian excursions. Unpublished manuscript.
[59] Pitman, J. and Yor, M. (1992). Arcsine laws and interval partitions derived from a stable subordinator. Proc. London Math. Soc. 3 65 326-356. · Zbl 0769.60014 · doi:10.1112/plms/s3-65.2.326
[60] Pitman, J. and Yor, M. (1996). On the relative lengths of excursions derived from a stable subordinator. Séminaire de Probabilités XXXI. · Zbl 0884.60072
[61] Resnick, S. I. (1986). Point processes, regular variation and weak convergence. Adv. in Appl. Probab. 18 66-138. JSTOR: · Zbl 0597.60048 · doi:10.2307/1427239 · http://links.jstor.org/sici?sici=0001-8678%28198603%2918%3A1%3C66%3APPRVAW%3E2.0.CO%3B2-R&origin=euclid
[62] Scheffer, C. (1995). The rank of the present excursion. Stochastic Process Appl. 55 101- 118. · Zbl 0819.60069 · doi:10.1016/0304-4149(95)91544-B
[63] Shepp, L. and Lloyd, S. (1966). Ordered cycle lengths in a random permutation. Trans. Amer. Math. Soc. 121 340-357. JSTOR: · Zbl 0156.18705 · doi:10.2307/1994483 · http://links.jstor.org/sici?sici=0002-9947%28196602%29121%3A2%3C340%3AOCLIAR%3E2.0.CO%3B2-C&origin=euclid
[64] Stepanov, V. (1969). Limit distributions of certain characteristics of random mappings. Theory Probab. Appl. 14 612-626. · Zbl 0204.51602
[65] Vershik, A. M. (1986). The asymptotic distribution of factorizations of natural numbers into prime divisors. Soviet Math. Dokl. 34 57-61. · Zbl 0625.10033
[66] Vershik, A. and Shmidt, A. (1977). Limit measures arising in the theory of groups, I. Theory Probab. Appl. 22 79-85. · Zbl 0375.60007 · doi:10.1137/1122006
[67] Vershik, A. and Shmidt, A. (1978). Limit measures arising in the theory of symmetric groups, II. Theory Probab. Appl. 23 36-49. · Zbl 0423.60009 · doi:10.1137/1123003
[68] Vershik, A. and Yor, M. (1995). Multiplicativité du processus gamma et étude asymptotique des lois stables d’indice, lorsque tend vers 0. Technical Report 289, Laboratoire de Probabilités, Univ. Paris VI.
[69] Vervaat, W. (1972). Success Epochs in Bernoulli Trials. Math. Centre Tracts 42. Math. Centrum, Amsterdam. · Zbl 0267.60003
[70] Vervaat, W. (1979). On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. in Appl. Probab. 11 750-783. JSTOR: · Zbl 0417.60073 · doi:10.2307/1426858 · http://links.jstor.org/sici?sici=0001-8678%28197912%2911%3A4%3C750%3AOASDEA%3E2.0.CO%3B2-%23&origin=euclid
[71] Watanabe, S. (1995). Generalized arc-sine laws for one-dimensional diffusion processes and random walks. Proc. Sympos. Pure Math. 57 157-172. · Zbl 0824.60080
[72] Watterson, G. A. (1976). The stationary distribution of the infinitely-many neutral alleles diffusion model. J. Appl. Probab. 13 639-651. · Zbl 0356.92012 · doi:10.2307/3212519
[73] Watterson, G. A. and Guess, H. (1977). Is the most frequent allele the oldest? Theoret. Population Biol. 11 141-160. · Zbl 0361.92017 · doi:10.1016/0040-5809(77)90023-5
[74] Wendel, J. (1964). Zero-free intervals of semi-stable Markov processes. Math. Scand. 14 21-34. · Zbl 0132.12802 · eudml:165864
[75] Zabell, S. (1996). The continuum of inductive methods revisited. In The Cosmos of Science (J. Earman and J. Norton, eds.). Univ. Pittsburgh Press/Univ. Konstanz.
[76] Derrida, B. (1994). Non-self-averaging effects in sums of random variables, spin glasses, random maps and random walks. In On Three Levels: Micro-, Meso-, and MacroApproaches in Physics (M. Fannes, C. Maes and A. Verbeure, eds.) NATO ASI Series 125-137. Plenum Press, New York. · Zbl 0863.60101