zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A remark on morphic Sturmian words. (English) Zbl 0883.68104
Summary: This note deals with binary Sturmian words that are morphic, i.e. generated by iterating a morphism. Among these, characteristic words are a well-known subclass. We prove that for every characteristic morphic word $x$, the four words $ax$, $bx$, $abx$ and $bax$ are morphic.

MSC:
68R15Combinatorics on words
68Q45Formal languages and automata
WorldCat.org
Full Text: EuDML
References:
[1] 1. J. BERSTEL and P. SÉÉBOLD, A Characterization of Sturmian Morphisms, in: A. BORZYSKOWSKI, S. SOKOLOWSKI (eds.) MFCS’93, Leci. Notes Comp. Sci., 1993, 711, pp. 281-290. Zbl0925.11026 MR1265070 · Zbl 0925.11026
[2] 2. E. BOMBIERI and J. E. TAYLOR, Which Distributions of Matter DiffractW? An Initial Investigation, J. Phys., 1986, 47, Colloque C3, pp. 19-28. Zbl0693.52002 MR866320 · Zbl 0693.52002
[3] 3. J.-P. BOREL and F. LAUBIE, Quelques mots sur la droite projective réelle, J. théorie des nombres de Bordeaux, 1993, 5, pp. 23-52. Zbl0839.11008 MR1251226 · Zbl 0839.11008 · doi:10.5802/jtnb.77 · numdam:JTNB_1993__5_1_23_0 · eudml:93576
[4] 4. T. C. BROWN, Descriptions of the Characteristic Sequence of an Irrational, Canad. Math. Bull., 1993, 36, 1, pp. 15-21. Zbl0804.11021 MR1205889 · Zbl 0804.11021 · doi:10.4153/CMB-1993-003-6
[5] 5. E. COVEN and G. HEDLUND, Sequences with Minimal Block Growth, Math. Systems Theory, 1973, 7, pp.138-153. Zbl0256.54028 MR322838 · Zbl 0256.54028 · doi:10.1007/BF01762232
[6] 6. D. CRISP, W. MORAN, A. POLLINGTON, P. SHIUE, Subsitution Invariant Cutting Sequences, J. théorie des nombres de Bordeaux, 1993, 5, pp. 123-138. Zbl0786.11041 MR1251232 · Zbl 0786.11041 · doi:10.5802/jtnb.83 · numdam:JTNB_1993__5_1_123_0 · eudml:93567
[7] 7. K. CULIK II and S. DUBE, Rational and Affine Expressions for Image Descriptions, Discrete Appl. Math., 1993, 41, pp. 85-120. Zbl0784.68058 MR1198549 · Zbl 0784.68058 · doi:10.1016/0166-218X(93)90031-I
[8] 8. K. CULIK II and S. DUBE, L-Systems and Mutually Recursive Function Systems, Acta Inform., 1993, 30, pp. 279-302. Zbl0790.68056 MR1227886 · Zbl 0790.68056 · doi:10.1007/BF01179375
[9] 9. K. CULIK II and S. DUBE, Encoding Images as Words and Languages, Intern. J. Algebra Comput., 1993, 3, pp. 221-236. Zbl0777.68056 MR1233222 · Zbl 0777.68056 · doi:10.1142/S0218196793000160
[10] 10. K. CULIK II and T. HARJU, Dominoes, Slicing Semigroups and DNA, Discrete Appl. Math., 1991, 31, pp. 261-277. Zbl0747.20035 MR1110460 · Zbl 0747.20035 · doi:10.1016/0166-218X(91)90054-Z
[11] 11. K. CULIK II and J. KARHUMÄKI, Iterative Devices Generating Infinite Words, Intern. J. Algebra Comput. (to appear). · Zbl 0900.68337
[12] 12. K. CULIK II and J. KARI, Image Compression Using Weighted Automata, Computer and Graphics, 1993, 17, pp. 305-313. · Zbl 0813.68159
[13] 13. K. CULIK II and A. SALOMAA, On Infinite Words Obtained by Iterating Morphisms, Theoret. Comput. Sci., 1982, 19, pp. 29-38. Zbl0492.68059 MR664411 · Zbl 0492.68059 · doi:10.1016/0304-3975(82)90013-5
[14] 14. A. DE LUCA and F. MIGNOSI, Some Combinatorial Properties of Sturmian Words, Theoret. Comput. Sci. (to appear). Also Available as Technical Report LITP 93-53, october 1993. Zbl0874.68245 MR1872447 · Zbl 0874.68245 · doi:10.1016/0304-3975(94)00035-H
[15] 15. G. HEDGLUND and M. MORSE, Symbolic Dynamics II: Sturmian Sequences, Amer. J. Math., 1940, 61, pp. 1-42. JFM66.0188.03 · Zbl 66.0188.03
[16] 16. F. MIGNOSI, P. SÉÉBOLD, Morphismes sturmiens et règles de Rauzy, J. théorie des nombres de Bordeaux, 1993, 5, pp. 221-233. Zbl0797.11029 MR1265903 · Zbl 0797.11029 · doi:10.5802/jtnb.91 · numdam:JTNB_1993__5_2_221_0 · eudml:93580
[17] 17. A. SALOMAA, Morphisms on Free Monoids and Language Theory, in Formal Language Theory: Perspectives and Open Problems, 1980, pp. 141-166, Academic Press.
[18] 18. A. SALOMAA, Jewels of Formal Language Theory, Computer Science Press, 1981. Zbl0487.68064 MR618124 · Zbl 0487.68064
[19] 19. Z.-X. WEN and Z.-Y. WEN, Local Isomorphisms of Invertible Substitutions, C. R. Acad. Sci. Paris (to appear). Zbl0812.11018 · Zbl 0812.11018