zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
From numbers to rings: The early history of ring theory. (English) Zbl 0908.16001
In this history of ring theory, going roughly from 1840 to 1940, the author lists the main stages: in the non-commutative theory they are hypercomplex systems and division algebras, while the commutative theory has the two large branches of algebraic number theory and algebraic geometry, with a brief mention of some of the methods to which they gave arise. There is no mention of more modern developments, nor of the many applications: representation theory, power series rings in probability theory, algebras in functional analysis etc.
16-03Historical (associative rings and algebras)
01A55Mathematics in the 19th century
01A60Mathematics in the 20th century
Full Text: DOI
[1] G. Birkhoff and S. MacLane, A Survey of Modern Algebra , Macmillan, 1941. · Zbl 0052.25402
[2] N. Bourbaki, Elements of the History of Mathematics , Springer-Verlag, 1994. · Zbl 1107.01001 · doi:10.1007/978-3-540-33981-6
[3] D.M. Burton and D.H. Van Osdol, “Toward the definition of an abstract ring”, in: Learn from the Masters , ed. by F. Swetz et al, Mathematical Association of American, 1995, pp. 241-251.
[4] H. Cohn, Advanced Number Theory , Dover, 1980. · Zbl 0474.12002
[5] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms , Springer-Verlag, 1992.
[6] T. Crilly, “Invariant Theory”, in: Companion Encyclopedia of the History and Philosophy of the Math- ematical Sciences , ed. by I. Grattan-Guinness, Routledge, 1994, pp. 787-793.
[7] H.M. Edwards, “Dedekind’s invention of ideals”, Bull. Lond. Math. Soc. 15(1983), 8-17. · Zbl 0504.01009 · doi:10.1112/blms/15.1.8
[8] , “The genesis of ideal theory”, Arch. Hist. Ex. Sci. 23(1980), 321-378. · Zbl 0472.01013 · doi:10.1007/BF00327914
[9] , Fermat’s Last Theorem: A Genetic Introduction to Algebraic Number Theory , Springer-Verlag, 1977.
[10] D. Eisenbud, Commutative Algebra, with a View Toward Algebraic Geometry , Springer-Verlag, 1995. · Zbl 0819.13001
[11] A. Fraenkel, “U \" ber die Teiler der Null und die Zerlegung von Ringen”, Jour. fu\"r die Reine und Angew. Math. 145(1914), 139-176.
[12] J.J. Gray, “Early modern algebraic geometry”, in: Companion Encyclopedia of the History and Philos- ophy of the Mathematical Sciences , ed. by I. Grattan-Guinness, Routledge, 1994, pp. 920-926.
[13] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory , 2nd ed., Springer-Verlag, 1982. · Zbl 0482.10001
[14] M. Kline, Mathematical Thought from Ancient to Modern Times , Oxford University Press, 1972. · Zbl 0277.01001
[15] C.C. MacDuffee, “Algebra’s debt to Hamilton”, Scripta Math. 10(1944), 25-35. · Zbl 0060.01213
[16] K.H. Parshall, “H.M. Wedderburn and the structure theory of algebras”, Arch. Hist. Ex. Sci. 32(1985), 223-349. · Zbl 0561.01010 · doi:10.1007/BF00348450
[17] J.H. Silverman and J. Tate, Rational Points on Elliptic Curves , Springer-Verlag, 1992. · Zbl 0752.14034
[18] M. Sono, “On Congruences I-IV”, Mem. Coll. Sci. Kyoto . 2(1917), 203-226, 3(1918), 113-149, 189- 197, and 299-308.
[19] B.L. Van der Waerden, A History of Algebra , Springer-Verlag, 1985.
[20] J.H.M. Wedderburn, “On hypercomplex numbers”, Proc. Lond. Math. Soc. 6(1907), 77-118.