zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Classification by pairwise coupling. (English) Zbl 0932.62071
Summary: We discuss a strategy for polychotomous classification that involves estimating class probabilities for each pair of classes, and then coupling the estimates together. The coupling model is similar to the Bradley-Terry method for paired comparisons [{\it R. A. Bradley} and {\it M. E. Terry}, Biometrika 39, 324-345 (1952; Zbl 0047.12903)]. We study the nature of the class probability estimates that arise, and examine the performance of the procedure in real and simulated data sets. Classifiers used include linear discriminants, nearest neighbors, adaptive nonlinear methods and the support vector machine.

MSC:
62H30Classification and discrimination; cluster analysis (statistics)
62J15Paired and multiple comparisons
68T10Pattern recognition, speech recognition
WorldCat.org
Full Text: DOI
References:
[1] Bishop, Y., Fienberg, S. and Holland, P. (1975). Discrete Multivariate Analy sis. MIT Press. · Zbl 0332.62039
[2] Boser, B., Guy on, I. and Vapnik, I. (1992). A training algorithm for optimal margin classifiers. In Proceedings of COLT II, Philadelphia, PA.
[3] Bradley, R. and Terry, M. (1952). The rank analysis of incomplete block designs. I. The method of paired comparisons. Biometrika 39 324-345. JSTOR: · Zbl 0047.12903 · http://links.jstor.org/sici?sici=0006-3444%28195212%2939%3A3%2F4%3C324%3ARAOIBD%3E2.0.CO%3B2-C&origin=euclid
[4] Deming, W. and Stephan, F. (1940). On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Statist. 11 427-444. · Zbl 0024.05502 · doi:10.1214/aoms/1177731829
[5] Friedman, J. (1991). Multivariate adaptive regression splines (with discussion). Ann. Statist. 19 1-141. Friedman, J. (1996a). Another approach to poly chotomous classification. Technical report, Stanford Univ. Friedman, J. (1996b). Bias, variance, 0-1 loss and the curse of dimensionality. Technical report, Stanford Univ. · Zbl 0765.62064 · doi:10.1214/aos/1176347963
[6] Hastie, T. (1989). Discussion of ”Flexible parsimonious smoothing and additive modelling” by Friedman and Silverman. Technometrics 31 3-39. · Zbl 0672.65119
[7] Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman and Hall, London. · Zbl 0747.62061
[8] Hastie, T., Tibshirani, R. and Buja, A. (1994). Flexible discriminant analysis by optimal scoring. J. Amer. Statist. Assoc. 89 1255-1270. JSTOR: · Zbl 0812.62067 · doi:10.2307/2290989 · http://links.jstor.org/sici?sici=0162-1459%28199412%2989%3A428%3C1255%3AFDABOS%3E2.0.CO%3B2-H&origin=euclid
[9] Robinson, A. J. (1989). Dy namic error propagation networks. Ph.D. dissertation, Dept. Electrical Engineering, Cambridge Univ.
[10] Rosen, D., Burke, H. and Goodman, O. (1995). Local learning methods in high dimensions: beating the bias-variance dilemma via recalibration. In NIPS Workshop: Machines that Learn-Neural Networks for Computing.
[11] Vapnik, V. (1996). The Nature of Statistical Learning Theory. Springer, New York. · Zbl 0934.62009