×

Inner diagonals of convex polytopes. (English) Zbl 0948.52003

For \(1\leqslant i\leqslant d,\) an \(i\)-diagonal of a \(d\)-polytope \(P\) is a segment \([x,y]\) whose ends are vertices of \(P\) and whose carrier in \(P\) is of dimension \(i.\) The number of \(i\)-diagonals is denoted by \(\delta_i(P).\) Thus \(\delta_1(P)\) is the number of edges and \(\delta_d(P)\) is the number of inner diagonals. The focus here is on \(\delta_d(P).\)
The paper’s main results are as follows:
(a) Within the class of \(d\)-polytopes that have a given number \(v\) of vertices, the maximum of \(\delta_d(P)\) is \(\binom v2-dv+\binom{d+1}{2}.\) For \(d\geqslant 4\) this maximum is attained by the stacked polytopes and only by them.
(b) Within the class of \(d\)-polytopes that have a given number \(f\geqslant 2d\) of facets, the maximum of \(\delta_d(P)\) is attained by certain simple \(d\)-polytopes.
(c) For each simplicial 3-polytope with \(f\) facets \(\delta_3(P)=(f^2-6f+8)/8,\) while for simple 3-polytopes \(\delta_3(P)\) ranges from \(f^2-9f+20\) to (when \(f\geqslant 14\)) \(2f^2-21f+64.\)

MSC:

52B11 \(n\)-dimensional polytopes
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Avis, D., Generating rooted triangulations without repetitions, Algorithmica, 16, 618-632 (1996) · Zbl 0860.68107
[2] Barnette, D., A proof of the lower bound conjecture for convex polytopes, Pacific J. Math., 46, 349-354 (1973) · Zbl 0264.52006
[3] Carathéodory, C., Über die Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen, Rend. Circ. Palermo, 32, 193-217 (1911) · JFM 42.0429.01
[4] Eberhard, V., Zur Morphologie der Polyeder (1891), Teubner: Teubner Leipzig · JFM 23.0544.03
[5] Eggleston, H. G.; Grünbaum, B.; Klee, V., Some semicontinuity theorems for convex polytopes and cell-complexes, Comment. Math. Helv., 39, 165-188 (1964) · Zbl 0137.41802
[6] Fisher, J. C., An existence theorem for simple convex polyhedra, Discrete Math., 7, 75-97 (1974) · Zbl 0271.52008
[7] D. Gale, Neighborly and cyclic polytopes, in Convexity (V. Klee, Ed.), Proc. Sympos. Pure Math., Vol. 7, pp. 225-232.; D. Gale, Neighborly and cyclic polytopes, in Convexity (V. Klee, Ed.), Proc. Sympos. Pure Math., Vol. 7, pp. 225-232. · Zbl 0137.41801
[8] Grünbaum, B., Convex Polytopes (1967), Wiley-Interscience: Wiley-Interscience London
[9] Grünbaum, G., Polytopal graphs, (Fulkerson, D. R., Studies in Graph Theory. Studies in Graph Theory, MAA Studies in Mathematics, 12 (1975), Math. Assoc. of America: Math. Assoc. of America Washington), 201-224 · Zbl 0323.05104
[10] Grünbaum, B.; Motzkin, T. S., The number of hexagons and the simplicity of geodesics on certain polyhedra, Canad. J. Math., 15, 744-751 (1963) · Zbl 0121.37605
[11] Grünbaum, B.; Sreedharan, V. P., An enumeration of simplicial 4-polytopes with 8 vertices, J. Combin. Theory, 2, 437-465 (1967) · Zbl 0156.43304
[12] Jendrol’, S., On the face-vectors of trivalent convex polyhedra, Math. Slovaca, 33, 165-180 (1983) · Zbl 0515.52004
[13] Jucovič, E., On polyhedral realizability of certain sequences, Canad. Math. Bull., 12, 31-39 (1969) · Zbl 0185.48402
[14] Kalai, G., Rigidity and the lower bound theorem, I, Invent. Math., 88, 125-151 (1987) · Zbl 0624.52004
[15] Kalai, G., Some aspects of the combinatorial theory of convex polytopes, (Bisztriczky, T.; McMullen, P.; Schneider, R.; Ivić Weiss, A., Polytopes: Abstract, Convex and Computational (1993), Kluwer: Kluwer Dordrecht), 205-229 · Zbl 0804.52006
[16] Keiding, H., On the maximal number of Nash equilibria in an \(n\)×\(n\) bimatrix game, Games Econom. Behav., 21, 148-160 (1997) · Zbl 0911.90352
[17] Klee, V., On the number of vertices of a convex polytope, Canad. J. Math., 16, 701-720 (1964) · Zbl 0128.17201
[18] Mani, P., Inner illumination of convex polytopes, Comment. Math. Helv., 49, 65-73 (1974) · Zbl 0275.52004
[19] McLennan, A.; Park, I.-U., Generic 4×4 two person games have at most 15 Nash equilibria, Games Econom. Behavior, 26, 111-130 (1999) · Zbl 0930.91003
[20] Rosenfeld, M., Inner illumination of convex polytopes, Elem. Math., 30, 27-28 (1975) · Zbl 0297.52004
[21] Roudneff, J.-P., An inequality for 3-polytopes, J. Combin. Theory Ser. B, 42, 156-166 (1987) · Zbl 0576.05021
[22] Stanley, R., Generalized \(h\)-vectors, intersection cohomology of toric varieties, and related results, (Nagata, M.; Matsumura, H., Commutative Algebra and Combinatorics. Commutative Algebra and Combinatorics, Advanced Studies in Pure Mathematics, 11 (1987), Kinokuniya: Kinokuniya Tokyo), 187-213
[23] Steinitz, E.; Rademacher, H., Vorlesungen über die Theorie der Polyeder (1934), Springer-Verlag: Springer-Verlag Berlin · Zbl 0325.52001
[24] von Stengel, B., New maximal numbers of equilibria in bimatrix games, Discrete Comput. Geom., 21, 557-568 (1999) · Zbl 0956.91003
[25] Whiteley, W., Infinitesimally rigid polyhedra. I. Statics of frameworks, Trans. Amer. Math. Soc., 285, 431-465 (1984) · Zbl 0518.52010
[26] Ziegler, G., Lectures on Polytopes (1994), Springer-Verlag: Springer-Verlag New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.