zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On a representation of the idele class group related to primes and zeros of $L$-functions. (English) Zbl 1079.11044
In the study of zeta and $L$-functions of curves over finite fields a critical step is the identification of the “numerator” of the function with the characteristic polynomial of an operator. This is usually done either in terms of the Jacobian or of étale cohomology. Neither of these exists in the number-field case and it has been a major problem for something like 60 years to find such an interpretation of the Hadamard product representation of such a function. As was first indicated by A. Weil one can interpret the Hadamard product representation in terms of a distributional identity (“explicit formulæ of prime number theory”). There have been several interpretations of these formulæ in such a fashion as to have a cohomological interpretation; see, for example, {\it C. R. Matthews}, “Spectral analysis of the action of ideles on adèles” [J. Lond. Math. Soc. (2) 32, 392--398 (1985; Zbl 0614.12009)], {\it D. Goldfeld}, “Explicit formulae as trace formula” [in: Number Theory, Trace Formulas and Discrete Groups, Symp. in honor of A. Selberg, Oslo, Norway, 281--288 (1987; Zbl 0668.10050)], {\it A. Connes}, “Trace formula in noncommutative geometry and the zeros of the Riemann zeta function” [Sel. Math., New Ser. 5, 29--106 (1999; Zbl 0945.11015)]. The paper under review is devoted to examing this interpretation in more detail. The problem is that the underlying space is $K_{\Bbb A}/K\sp{\times}$ where $K$ denotes a number field. This is very singular and it is difficult to understand the function spaces on it. It follows Connes’ conceptions but instead of using Hilbert spaces, which assume the validity of the generalized Riemann Hypothesis, the author uses nuclear bornological spaces. This is in many ways a more natural setting for Weil’s formula (and for a number of other contexts). The author shows how it can be used to reprove the prime number/ideal theorem without reference to the theory of Dirichlet series.

11M26Nonreal zeros of $\zeta (s)$ and $L(s, \chi)$; Riemann and other hypotheses
22D12Other representations of locally compact groups
43A35Positive definite functions on groups, semigroups, etc.
58B34Noncommutative geometry (á la Connes)
Full Text: DOI
[1] F. Bruhat, Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes $\wp$\nobreakdash-adiques , Bull. Soc. Math. France 89 (1961), 43--75. · Zbl 0128.35701 · numdam:BSMF_1961__89__43_0 · eudml:87007
[2] J.-F. Burnol, Sur les formules explicites, I: Analyse invariante , C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), 423--428. · Zbl 0992.11064 · doi:10.1016/S0764-4442(00)01687-6
[3] --. --. --. --., On Fourier and zeta(s) , Forum Math. 16 (2004), 789--840. · Zbl 1077.11058 · doi:10.1515/form.2004.16.6.789
[4] A. Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function , Selecta Math. (N.S.) 5 (1999), 29--106. · Zbl 0945.11015 · doi:10.1007/s000290050042
[5] P. Deligne, La conjecture de Weil, II , Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137--252. · Zbl 0456.14014 · doi:10.1007/BF02684780 · numdam:PMIHES_1980__52__137_0 · eudml:103970
[6] R. Godement and H. Jacquet, Zeta Functions of Simple Algebras , Lecture Notes in Math. 260 , Springer, Berlin, 1972. · Zbl 0244.12011 · doi:10.1007/BFb0070263
[7] N. Grønbæk, Morita equivalence for self-induced Banach algebras , Houston J. Math. 22 (1996), 109--140. · Zbl 0864.46026
[8] --. --. --. --., An imprimitivity theorem for representations of locally compact groups on arbitrary Banach spaces , Pacific J. Math. 184 (1998), 121--148.
[9] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires , Mem. Amer. Math. Soc. 1955 , no. 16. · Zbl 0123.30301
[10] H. Hogbe-Nlend and V. B. Moscatelli, Nuclear and Conuclear Spaces , North-Holland Math. Stud. 52 , North-Holland, Amsterdam, 1981. · Zbl 0467.46001
[11] B. Keller, “Derived categories and their uses” in Handbook of Algebra, Vol. 1 , North-Holland, Amsterdam, 1996, 671--701. · Zbl 0862.18001 · doi:10.1016/S1570-7954(96)80023-4
[12] R. Meyer, Generalized fixed point algebras and square-integrable groups actions , J. Funct. Anal. 186 (2001), 167--195. · Zbl 1003.46036 · doi:10.1006/jfan.2001.3795
[13] --. --. --. --., “Bornological versus topological analysis in metrizable spaces” in Banach Algebras and Their Applications , Contemp. Math. 363 , Amer. Math. Soc., Providence, 2004, 249--278. · Zbl 1081.46004
[14] --. --. --. --., Smooth group representations on bornological vector spaces , Bull. Sci. Math. 128 (2004), 127--166. · Zbl 1037.22011 · doi:10.1016/j.bulsci.2003.12.002
[15] --------, The cyclic homology and K\nobreakdash-theory of certain adelic crossed products , · http://arxiv.org/abs/math.KT/0312305
[16] A. Neeman, The derived category of an exact category , J. Algebra 135 (1990), 388--394. · Zbl 0753.18004 · doi:10.1016/0021-8693(90)90296-Z
[17] S. J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function , Cambridge Stud. Adv. Math. 14 , Cambridge Univ. Press, Cambridge, 1988. · Zbl 0641.10029
[18] D. Quillen, “Higher algebraic $K$-theory, I” in Algebraic $K$-Theory, I: Higher $K$-Theories (Seattle, 1972) , Lecture Notes in Math. 341 , Springer, Berlin, 1973, 85--147. · Zbl 0292.18004
[19] J. T. Tate, “Fourier analysis in number fields and Hecke’s zeta-functions” in Algebraic Number Theory (Brighton, U.K., 1965) , Thompson, Washington, D.C., 1967, 305--347.
[20] A. Weil, Sur les “formules explicites” de la théorie des nombres premiers , Comm. Sém. Math. Univ. Lund 1952 , 252--265. · Zbl 0049.03205
[21] --. --. --. --., Sur les formules explicites de la théorie des nombres , Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 3--18.; English translation in Math. USSR-Izv. 6 , no. 1 (1972), 1--17. · Zbl 0245.12010
[22] --------, Basic Number Theory , Classics Math., Springer, Berlin, 1995. · Zbl 0823.11001