zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Making transcendence transparent. An intuitive approach to classical transcendental number theory. (English) Zbl 1092.11031
New York, NY: Springer (ISBN 0-387-21444-5/hbk). viii, 263 p. $ 39.95; EUR 39.95/net; £ 30.50; sFr 73.00 (2004).
One of the goals of the authors is to provide the reader with an intuitive framework in which the major classical results of transcendental number theory can be appreciated. In the title of the book, {\it classical transcendental number theory } refers to the most widely known results that were obtained in the nineteenth and early twentieth centuries. As pointed out by the authors, the underlying principles upon which the entire discipline is based are both straightforward and central to all of number theory. This book is an introduction to the subject which is supposed to enable the reader to pursue later his study with more modern results. The traditional numbering with chapters is replaced here by a numbering with numbers, usually given by the first digits of the decimal expansion. Number 0 is $\sqrt{2}$. This chapter is a down to earth introduction to the basic concepts. Definitions of integers, rational numbers, real numbers, complex numbers are given with motivations. The two theorems of this section are as follows: {\it the number $\sqrt{2}$ is not a rational number} and {\it the number $i$ is not the limit of a sequence of rational numbers} (the proof of the latter is left as a challenge for the reader). Number 1 is $\sum\sb{n=1}\sp{\infty}10^{-n!}$. This chapter is dedicated to Liouville’s numbers. Number 2 is $e$. The corresponding chapter includes a proof of the transcendence of this number (Hermite’s Theorem) as well as a proof of the irrationality of $\pi$ (Lambert’s Theorem). Number 3 is $e\sp{\sqrt{2}}$. This chapter deals with Hermite-Lindemann’s Theorem on the transcendence of $e\sp{\alpha}$ for $\alpha$ a non zero algebraic number, and with Lindemann-Weierstrass’ Theorem on the algebraic independence of such numbers for linearly independent $\alpha$’s. Number 4 is $e\sp{\pi}$. The authors give a proof of the transcendence of this number (Gel’fond’s Theorem going back to 1929). They start by proving with some details $e\sp{\pi}\not=23.25$, next they prove the irrationality, and finally the transcendence of this number. Number 5 is $2\sp{\sqrt{2}}$. A solution of Hilbert’s seventh problem (Gel’fond-Schneider’s 1934 Theorem) is given. Number 6 is $e+\sum\sb{n=1}\sp{\infty}10^{-n!}$. The transcendence of this number is deduced from the properties of Mahler’s classification of transcendental numbers. Number 7 is $\Gamma(1/4)\sp{2}/\sqrt{\pi}$. Some of Schneider’s results on the transcendence of periods of elliptic curves are proved. Number 8 is $e\sb{C}(1)$ where $e\sb{C}$ is the exponential function of Carlitz module over the field with two elements. This last chapter is an introduction to the theory of transcendence in fields of finite characteristic. An appendix provides basic facts from complex analysis which are required for the proofs. This book is aimed at beginners who like to have examples and detailed proofs with plenty of details and lengthy arguments. The reader who is looking for a concise treatment of the subject will prefer {\it Alan Baker}’s book [Transcendental number theory. Cambridge Mathematical Library. Cambridge etc.: Cambridge University Press (1975; Zbl 0715.11032) (1979; Zbl 0497.10023) (1990; Zbl 0297.10013)]. Those who either wish reliable information on the history or are interested with the state of the art of the subject will find them in the book by {\it N. I. Fel’dman} and {\it Yu. V. Nesterenko} [Transcendental numbers. Transl. from the Russian by Neal Koblitz. Encyclopaedia of Mathematical Sciences. 44. Berlin: Springer (1998; Zbl 0885.11004)].

11JxxDiophantine approximation
11-01Textbooks (number theory)