zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Valuations, orderings, and Milnor $K$-theory. (English) Zbl 1103.12002
Mathematical Surveys and Monographs 124. Providence, RI: American Mathematical Society (AMS) (ISBN 0-8218-4041-X/hbk). xiii, 288 p. $ 75.00 (2006).
The monograph under review is a systematic and almost entirely self-contained exposition of the general theory of valued and ordered fields. It reflects the conceptual and technical development of the research in this area carried out for the last 30-35 years. The main objects dealt with are multiplicative groups of fields, valuations and orderings (brought together by various relations discussed in the text). It is well-known that the origin of the theory and the initial motivation for its development came from the role of absolute values of global fields in algebraic number theory and Diophantine analysis. Note also that the creation of abstract algebra in the 1920s, and the role of the Artin-Schreier theory of ordered fields in solving Hilbert’s 17-th Problem, stimulated the efforts to extend the results on absolute values from global to arbitrary fields. As explained in the Introduction, the implementation of this program led to the modern point of view on the topics discussed in the book; it caused, however, a split of the unified theory into two separate branches, focusing on ordered fields and on Krull valuations, respectively. Unlike many valuation-theorists, the author does not neglect the connections between valuations and orderings but emphasizes them, and whenever possible, studies them jointly, under the common name localities. He prefers to build up the theory by applying the machinery of ordered abelian groups instead of traditionally used techniques of commutative algebra. The book presents the classical aspects of the considered fields, namely, their arithmetic, topology and Galois theory. The reader can find such key ingredients of the theory as: valuation rings, the analysis of their ideals, the convex subgroups of the value group, the connection between these objects and coarsenings of valuations. The weak approximation theorem is stated in a general form characterizing independent localities; incomparable valuations are characterized in a similar manner. Apart from this, completions play a limited role in the general theory (except the case of real valued valuations). The properties of valuation prolongations on algebraic (particularly, finite) extensions are presented comprehensively. For a normal extension $L$ of a valued field $(F, v)$, it gives information on decomposition, inertia and ramification subgroups of the Galois group $G(L/F)$. By showing when a valuation $v$ of $F$ is relatively Henselian with respect to $L$, the author introduces the reader to the important classes of Henselian valued fields (and more generally, of $p$-Henselian valued fields for a prime number $p$, solvably Henselian valued fields, e.t.c.). He includes important characterizations of relative Henselity like Hensel’s lemma, the Hensel-Rychlik condition and the Krasner-Ostrowski lemma. Relative real closures of ordered fields are viewed as analogues to relative Henselizations; they are characterized in the framework of a relative Artin-Schreier theory (by applying Sturm’s theorem for real closed fields). The concluding quarter of the book is devoted to cohomological aspects of valuations and orderings. They are discussed using the language of Milnor’s $K$-theory (more precisely, the introduced generalized version of the Milnor $K$-ring functor, and its target category, the so-called $k$-structures). The discussion introduces the reader to valuation-theoretic techniques as used in applications to birational abelian geometry. Throughout the monography, the presented material is illustrated by examples and constructions. This quality of the book (as well as its bibliography) could make it genuinely useful for graduate students in algebra and number theory, and for mathematicians of different levels of interest in valuation theory and its applications.

12J10Valued fields
12-02Research monographs (field theory)
12J15Ordered fields
12E30Field arithmetic
12J20General valuation theory
19F99$K$-theory in number theory