zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The four laws of black hole mechanics. (English) Zbl 1125.83309
Summary: Expressions are derived for the mass of a stationary axisymmetric solution of the Einstein equations containing a black hole surrounded by matter and for the difference in mass between two neighboring such solutions. Two of the quantities which appear in these expressions, namely the area $A$ of the event horizon and the “surface gravity” $\kappa$ of the black hole, have a close analogy with entropy and temperature respectively. This analogy suggests the formulation of four laws of black hole mechanics which correspond to and in some ways transcend the four laws of thermodynamics.

83C57Black holes
83C20Classes of solutions of equations in general relativity
Full Text: DOI
[1] Hawking, S. W.: Commun. math. Phys.25, 152--166 (1972). · doi:10.1007/BF01877517
[2] Hawking, S. W.: The event horizon. In: Black Holes. New York, London, Paris: Gordon and Breach 1973 (to be published).
[3] Hawking, S. W., Ellis, G. F. R.: The large scale structure of space-time. Cambridge: Cambridge University Press 1973 (to be published). · Zbl 0265.53054
[4] Carter, B.: Phys. Rev. Letters26, 331--333 (1971). · doi:10.1103/PhysRevLett.26.331
[5] Carter, B.: (Preprint, Institute of Theoretical Astronomy, Cambridge, England).
[6] Carter, B.: Properties of the Kerr metric. In: Black Holes. New York, London, Paris: Gordon and Breach 1973 (to be published).
[7] Smarr, L.: Phys. Rev. Letters30, 71--73 (1973). · doi:10.1103/PhysRevLett.30.71
[8] Beckenstein, J.: PhD Thesis. Princeton University, 1972.
[9] Carter, B.: J. Math. Phys.10, 70--81 (1969). · Zbl 0165.58902 · doi:10.1063/1.1664763
[10] Hawking, S. W.: Commun. math. Phys.18, 301--306 (1970). · Zbl 0197.26403 · doi:10.1007/BF01649448
[11] Hawking, S. W., Hartle, J. B.: Commun. math. Phys.27, 283--290 (1972). · doi:10.1007/BF01645515
[12] Bardeen, J. M.: Astrophys. J.162, 71--95 (1970). · doi:10.1086/150635
[13] Bardeen, J. M.: Nature226, 64--65 (1970). · doi:10.1038/226064a0
[14] Christodoulou, D.: Phys. Rev. Letters25, 1596--1597 (1970). · doi:10.1103/PhysRevLett.25.1596