zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Equations with nonnegative characteristic form. I. (English. Russian original) Zbl 1200.35158
This is the first part (Chapters 1 and 2) of a two-part work which is aimed at presenting the foundations of the general theory of second order partial differential equations with nonnegative characteristic form. It is devoted to the anniversary of the famous Russian mathematician O. A. Oleinik and is based on a series of joint papers of O. A. Oleinik and E. V. Radkevich written in 1974--1978. The ideas and methods of the latter have found numerous applications which motivated E. V. Radkevich to review the old results on second order partial differential equations with nonnegative characteristic form and to present them in detail for more general type of equations. An equation of the form $$ L(u):=a^{kj}(x)u_{x_{k}x_{j}}+b^{k}(x)u_{x_{k}}+c(x)u=f(x),\quad a^{kj}\xi_k\xi_j\geq 0$$ where repeated indices are summed from 1 to $m$ is called an equation with nonnegative characteristic form on a set $G$ if at each point $x$ in $G$ it holds: $a^{kj}\xi_k\xi_j\geq0$ for any real vector $\xi=\{\xi_1,\dots,\xi_m\}$. Such equations are also called degenerate elliptic equations or elliptic-parabolic equations. Note that first results for the boundary-value problems to the equation (2) were obtained by G. Fichera in 1956. In Chapter 1 of the present paper, the existence of a generalized solution of the boundary value problem to equation (2) is obtained as the limit of the boundary-value problem solution to the equation $\varepsilon\Delta u+L(u)=f$ when $\varepsilon\to+0$. In the second chapter, the smoothness of a solution of the boundary-value problem to the equation (2) is considered. The hypoellipticity of some class of degenerated elliptic operators was considered by L. Hormander in 1967 and afterwards in the works of E. V. Radkevich and O. A. Oleinik for the equation (1). These results in a more general form are provided in Chapters 2,3,4. Another application of equation (1) are the Tricomi problem, the equation of the mixed type and boundary layer asymptotic for the compressible fluid. In connection with the Tricomi problem an interest arises in elliptic and hyperbolic equations which are degenerated at the boundary. So in Chapter 2 there are considered the qualitative properties of solutions to the second order degenerated elliptic equation and the maximum principle. Chapter 5 deals with the boundary-value problem for degenerated hyperbolic equation $u_{tt}=L(u)+f$ and a condition for the existence of a solution to such boundary-value problem in the Sobolev spaces is obtained. Chapter 6 treats the question of the uniqueness (in the class of growing functions) of solutions to a boundary-value problem for evolution equations in unbounded domains. Some a priori estimates determine the behavior of solutions as $|x|\to\infty$ or $x\longrightarrow0$. The uniqueness theorems for the general boundary-value problems to the parabolic systems in unbounded domains are proved. The author has provided a panoramic view on the theory of partial differential and pseudo-differential operators. The work can be, in particular, a source of many special courses.

MSC:
35J70Degenerate elliptic equations
35-02Research monographs (partial differential equations)
35J25Second order elliptic equations, boundary value problems
WorldCat.org
Full Text: DOI
References:
[1] A. D. Aleksandrov, ”Investigations on the maximum principle. I,” Izv. Vyssh. Uchebn. Zaved. Mat., 5, No. 6, 126--157 (1958). · Zbl 0123.07101
[2] A. D. Aleksandrov, ”Investigations on the maximum principle. II,” Izv. Vyssh. Uchebn. Zaved. Mat., 3, No. 10, 3--12 (1959). · Zbl 0125.05901
[3] A. D. Aleksandrov, ”Investigations on the maximum principle. III,” Izv. Vyssh. Uchebn. Zaved. Mat., 5, No. 12, 16--32 (1959).
[4] A. D. Aleksandrov, ”Investigations on the maximum principle. IV,” Izv. Vyssh. Uchebn. Zaved. Mat., 3, No. 16, 3--15 (1960). · Zbl 0133.04405
[5] A. D. Aleksandrov, ”Investigations on the maximum principle. V,” Izv. Vyssh. Uchebn. Zaved. Mat., 5, No. 18, 16--26 (1960).
[6] P. S. Aleksandrov (Ed.), Hilbert Problems [in Russian], Nauka, Moscow (1969), pp. 216--219.
[7] O. Arena, ”Problemi parabolici in domini non limitati,” Le Matematiche, 29 (1974). · Zbl 0303.35044
[8] P. G. Aronson, ”On the initial value problem for parabolic systems of differential equations,” Bull. Am. Math. Soc., 65, No. 5, 310--318 (1958). · Zbl 0116.07202 · doi:10.1090/S0002-9904-1959-10335-9
[9] P. G. Aronson, ”Uniqueness of solutions of the initial value problem for parabolic systems of differential equations, ” J. Math. Mech., 11, No. 5, 403--420 (1962). · Zbl 0143.13801
[10] K. I. Babenko, ”On a new quasianalyticity problem and Fourier transform of entire functions,” Tr. Mosk. Mat. Obshch., 5, 523--542 (1958).
[11] M. S. Baouendi, ”Sur une classe d’opérateurs elliptiques dégénérant au bord,” C. R. Acad. Sci. Paris Sér. A--B, 262, A3337--A340 (1966). · Zbl 0131.09602
[12] M. S. Baouendi, ”Sur une classe d’opérateurs elliptiques dégénérés,” Bull. Soc. Math. Fr., 95, 45--87 (1967). · Zbl 0179.19501
[13] M. S. Baouendi and C. Goulaouic, ”Nonanalytic hypoellipticity for some degenerate elliptic operators,” Bull. Am. Math. Soc., 78, No. 3, 483--486 (1972). · Zbl 0276.35023 · doi:10.1090/S0002-9904-1972-12955-0
[14] M. S. Baouendi and P. Grisvard, ”Sur une équation d’évolution changeant de type,” J. Funct. Anal., 2, 352--367 (1968). · Zbl 0164.12701 · doi:10.1016/0022-1236(68)90012-8
[15] M. S. Baouendi and P. Grisvard, ”Sur une équation d’évolution changeant de type,” C. R. Acad. Sci. Paris Sér. A--B, 265, A556--A558 (1967). · Zbl 0157.45602
[16] I. S. Berezin, ”On Cauchy’s problem for linear equations of the second order with initial conditions on a parabolic line,” Mat. Sb., 24, No. 66, 301--320 (1949); English transl., Am. Math. Soc. Transl., I, No. 4, 415--439 (1962). · Zbl 0037.06902
[17] S. N. Bernšteĭn, ”Sur une généralisation des théorèmes de Liouville et de M. Picard,” C. R. Acad. Sci. Paris, 151, 635--638 (1910).
[18] S. N. Bernstein, ”Sur la nature analytique des solutions des équations aux dériveés partielles des second ordre,” Math. Ann., 59, 20--76 (1904). · Zbl 35.0354.01 · doi:10.1007/BF01444746
[19] L. Bers, ”Mathematical aspects of subsonic and transonic gas dynamics,” Surveys in Appl. Math., Vol. 3, Wiley, New Yoik; Chapman and Hall, London (1958). · Zbl 0083.20501
[20] L. Bers, F. John, and M. Schechter, ”Partial differential equations,” Lectures in Appl. Math., Vol. 3, Interscience, New York (1964). · Zbl 0126.00207
[21] L. Bers, F. John, and M. Shechter, Partial Differential Equations [Russian translation], Mir, Moscow (1966).
[22] P. Bolley and J. Camus, ”Études de la régularité de certains probèmes elliptiques dégénérés dans des ouverts non réguliers, par la méthode de réflexion,” C. R. Acad. Sci. Paris Sér. A--B, 268, A1462--A1464 (1969). · Zbl 0175.39801
[23] J.-M. Bony, ”Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés,” Ann. Inst. Fourier (Grenoble), 19, fasc. 1, 177--304 (1969).
[24] J.-M. Bony, ”Probéeme de Dirichlet et inégalité de Harnack pour une classe d’opérateurs elliptiques dégénérés du second ordre,” C. R. Acad. Sci. Paris Sér. A--B, 266, A830--A833 (1968). · Zbl 0153.41604
[25] J.-M. Bony, ”Sur la propagation des maximums et l’unicité du probléme de Cauchy pour les opérateurs elliptiques dégénérés du second ordre,” C. R. Acad. Sci. Paris Sér. A--B, 266, A763--A765 (1968). · Zbl 0153.42403
[26] N. I. Chaus, ”On the uniqueness of the solution of the Cauchy problem for a differential equation with constant coefficients,” Ukr. Mat. Zh., 16, No. 3, 417--421 (1964). · Zbl 0151.14501 · doi:10.1007/BF02538024
[27] N. I. Chaus, ”On the uniqueness of the solution of the Cauchy problem for systems of partial differential equations,” Ukr. Mat. Zh., 17, No. 1, 126--130 (1965). · Zbl 0171.06601 · doi:10.1007/BF02526593
[28] N. I. Chaus, ”Classes of the uniqueness for the solution of the Cauchy problem and the representation of positive-definite kernels,” In: Proc. Semin. on Funct. Anal., Issue 1, Inst. Mat. Akad. Nauk USSR (1968), pp. 170--273.
[29] Chi Min-Yu, ”The Cauchy problem for a class of hyperbolic equations with initial data on a tins of parabolic degeneracy,” Acta Math. Sin., 8, 521--530 (1958).
[30] J. Cohn and L. Nirenberg, ”Algebra of pseudodifferential operators,” In: ”Pseudodifferential Operators”, A Collection of Translations [Russian translation], Mir, Moscow (1967), pp. 10--62.
[31] R. Courant, Methods of Mathematical Physics. Vol. 2: Partial Differential Equations, Interscience, New York (1962). · Zbl 0099.29504
[32] R. Courant, Partial Differential Equations [Russian translation], Mir, Moscow (1964). · Zbl 0121.07801
[33] R. Denk and L. R. Volevich, ”A new class of parabolic problems connected with Newton’s polygon,” Uch. Zap., Ser. Math. Mech., 1, 146--159 (2005). · Zbl 1163.35406
[34] M. Derridj, ”Sur une classe d’opérateurs différentiels hypoelliptiques a cosfficients analytiques,” In: Séminaire Goulaouic--Schwarts 1970/71. Exposé No. 12, École Polytechnique, Centre de Mathématiques, Paris.
[35] A. Douglis and L. Nirenberg, ”Interior estimates for elliptic systems of partial differential equations,” Commun. Pure Appl. Math., 8, 506--638 (1955). · Zbl 0066.08002 · doi:10.1002/cpa.3160080406
[36] W. S. Edelstein, ”A spatial decay for the heat equation,” J. Apl. Math. Phys., 20, 900 (1969). · Zbl 0186.42703 · doi:10.1007/BF01592299
[37] Yu. V. Egorov, ”Hypoelliptic pseudodifferential operators,” Dokl. Akad. Nauk SSSR, 168, 1242--1244 (1966). · Zbl 0147.34601
[38] Yu. V. Egorov, ”On subelliptic pseudodifferential operators,” Dokl. Akad. Nauk SSSR, 188, 20--22 (1969). · Zbl 0195.14603
[39] Yu. V. Egorov, ”The canonical transformations of pseudodifferential operators,” Usp. Mat. Nauk, 24, No. 5 (149), 235--236 (1969).
[40] Yu. V. Egorov, ”Pseudodifferential operators of the principal type,” Mat. Sb., 73, No. 3, 356--374 (1967).
[41] Yu. V. Egorov, ”On a certain class of pseudodifferential operators,” Dokl. Akad. Nauk SSSR, 182, No. 6, 1251--1263 (1968).
[42] Yu. V. Egorov and V. A. Kondrat’ev, ”The oblique derivative problem,” Mat. Sb., 78, No. 120, 148--176 (1969). · Zbl 0165.12202
[43] S. D. Eidel’man, ”On the Cauchy problem for parabolic systems,” Dokl. Akad. Nauk SSSR, 98, No. 6, 913--915 (1954). · Zbl 0058.08801
[44] S. D. Eidel’man, ”Estimates of solutions of parabolic systems and some applications,” Mat. Sb., 33, No. 1, 57--72 (1954).
[45] S. D. Eidel’man and S. D. Ivasishen, ”2b-Parabolic systems,” In: Proc. Semin. on Functional Analysis, Issue 1, Inst. Mat. Akad. Nauk USSR (1968), pp. 3--135, 271--273.
[46] L. P. Eisenhart, Continuous Groups of Transformations, Princeton Univ. Press, Princeton, N. J. (1933). · Zbl 59.0430.01
[47] G. M. Fateeva, ”The Cauchy problem and boundary-value problem for linear and quasilinear degenerate second-order hyperbolic equations,” Dokl. Akad. Nauk SSSR, 172, 1278--1281 (1967). · Zbl 0156.33104
[48] G. M. Fateeva, ”Boundary-value problems for degenerate quasilinear parabolic equations,” Mat. Sb., 76, No. 118, 537--565 (1968).
[49] V. S. Fediĭ, ”Estimates in H (S) norms and hipoellipticity,” Dokl. Akad. Nauk SSSR, 193, 301--303 (1970).
[50] G. Fichera, ”Sulle equazioni differenziali lineari elliptico-paraboliche del secondo ordine,” Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Ser. I (8), 5, 1--30 (1956). · Zbl 0075.28102
[51] G. Fichera, ”On a unified theory of boundary-value problems for elliptic-parabolic equations of second order,” In: Boundary Problems. Differential Equations, Univ. of Wisconsin Press, Madison, Wisconsin (1960), pp. 97--120. · Zbl 0122.33504
[52] J. N. Flavin, ”On Knowles version of Saint-Venant’s principle in two-dimensional elastostatics,” Arch. Ration. Mech. Anal., 53, No. 4, 366--375 (1974). · Zbl 0283.73005 · doi:10.1007/BF00281492
[53] J. N. Franklin and E. R. Rodemich, ”Numerical analysis of an elliptic-parabolic partial differential equation,” SIAM J. Numer. Anal., 5, 680--716 (1968). · Zbl 0261.65069 · doi:10.1137/0705054
[54] M. I. Freidlin, ”Markov processes and differential equations,” In: Theory of Probability. Mathematical Statistics. Theoretical Cybernetics, Akad. Nauk SSSR Inst. Nauch. Inform., Moscow (1967), pp. 7--58.
[55] M. I. Freidlin, ”The first boundary-value problem for degenerating elliptic differential equations,” Usp. Mat. Nauk, 15, No. 2 (92), 204--206 (1960).
[56] M. I. Freidlin, ”On the formulation of boundary-value problems for degenerating elliptic equations,” Dokl. Akad. Nauk SSSR, 170, 282--285 (1966).
[57] M. I. Freidlin, ”The stabilization of the solutions of certain parabolic equations and systems,” Mat. Zametki, 3, 85--93 (1968).
[58] M. I. Freidlin, ”Quasilinear parabolic equations and measures on a function space,” Funkts. Anal. Prilozhen., 1, No. 3, 74--82 (1967). · Zbl 0164.41501
[59] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N. J. (1964). · Zbl 0144.34903
[60] K. O. Friedrichs, ”Pseudodifferential operators. An introduction,” Courant Lect. Notes Math., New York University (1970). · Zbl 0226.47028
[61] L. Gårding, ”Dirichlet’s problem for linear elliptic partial differential equations,” Math. Scand., 1, 55--72 (1953) · Zbl 0053.39101
[62] M. Geissert, M. Grec, M. Hieber, and E. V. Radkevich, ”The model problem associated to the Stefan problem with surface tension: An approach via Fourier--Laplace multipliers,” In: The Proceedings of a Conference in Cortona, Marcel Dekker (2006). · Zbl 1111.35133
[63] I. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. 1: Operations on them, Fizmatgiz, Moscow (1958); English transl., Academic Press, New York (1964). · Zbl 0091.11103
[64] I. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. 2: Spaces of Fundamental Functions, Fizmatgiz, Moscow (1958); English transl., Academic Press, New York (1964). · Zbl 0091.11103
[65] I. M. Gel’fand and G. E. Shilov, ”Fourier transform of fast growing functions and the questions of the uniqueness for solutions of the Cauchy problem,” Usp. Mat. Nauk, 8, No. 6, 3--54 (1953).
[66] S. Gellerstedt, ”Sur une équation linéaire aux dérivées partielles de type mixte,” Ark. Mat. Astr. Fys., 25A (1937). · Zbl 63.1056.03
[67] T. G. Genčev, ”Ultraparabolic equations,” Dokl. Akad. Nauk SSSR, 151, 265--268 (1963).
[68] V. P. Glushko, ”Coerciveness in L 2 of general boundary-value problems for a degenerate second order elliptic equation,” Funkts. Anal. Prilozhen., 2, No. 3, 87--88 (1968). · Zbl 0177.14303
[69] M. Yu. Granov and A. S. Shamaev, ”Construction and asymptotic analysis of effective assigment of optimal control of investment portfolios,” in press.
[70] B. Grec and E. V. Radkevich, ”Method of Newton polygon and local solvability of free-boundary problems,” Tr. Sem. I. G. Petrovskogo, in press.
[71] V. V. Grushin, ”On a class of elliptic pseudodifferential operators degenerate on a submanifold,” Sb. Math., 13, 155--185 (1971). · Zbl 0238.47038 · doi:10.1070/SM1971v013n02ABEH001033
[72] B. Hanouzet, ”Régularité pour une classe d’opérateurs eliiptiques dégénérés du deuxième ordre,” C. R. Acad. Sci. Paris Sér. A--B, 268,1177-1179 (1969). · Zbl 0172.38502
[73] G. Hellwig, ”Anfangs- und Randwertprobleme bei partiellen Differentialgleichungen von wechselndem Typus auf den Rändern,” Math. Z., 58, 337--357 (1953). · Zbl 0051.07601 · doi:10.1007/BF01174151
[74] D. Hilbert, Grundlagen der Geometrie, 7th ed., Teubner, Leipzig (1930).
[75] D. Hilbert, ”Über die Darstellung definiter Formen als Summen von Formenquadraten,” Math. Ann., 32, 342--350 (1888). · Zbl 20.0198.02 · doi:10.1007/BF01443605
[76] E. Hille, ”The abstract Cauchy problem and Cauchy problem for parabolic differential equations,” J. Anal. Math., 3, 81--196 (1953--1954). · Zbl 0059.08703 · doi:10.1007/BF02803587
[77] E. Holmgren, ”Sur les solutions quasianalytiques d’l’equations de la chaleur,” Ark. Mat., 18, 64--95 (1924).
[78] E. Hopf, ”Elementare Bemerkungen über die Lösungen partiellen Differentialgleichungen zweiter Ordnung vom elliptischen Typus,” S.-B. Preuss. Akad. Wiss., 19, 147--152 (1927). · Zbl 53.0454.02
[79] L. Hörmander, ”On the theory of general partial differential operators,” Acta Math., 94, 161--248 (1955). · Zbl 0067.32201 · doi:10.1007/BF02392492
[80] L. Hörmander, ”On interior regularity of the solutions of partial differential equations,” Commun. Pure Appl. Math., 11, 197--218 (1958). · Zbl 0081.31501 · doi:10.1002/cpa.3160110205
[81] L. Hörmander, ”Hypoelliptic differential operators,” Ann. Inst. Fourier (Grenoble), 11, 477--492 (1961). · Zbl 0099.30101
[82] L. Hörmander, ”Pseudo-differential operators and hypoelliptic equations,” Proc. Sympos. Pure Math., Vol. 10, Amer. Math. Soc, Providence, R. I. (1967) pp. 138--183.
[83] L. Hörmander, ”Pseudo-differential operators,” Commun. Pure Appl. Math., 18, 501--517 (1965). · Zbl 0125.33401 · doi:10.1002/cpa.3160180307
[84] L. Hörmander, ”Hypoelliptic second order differential equations,” Acta Math., 119, 147--171 (1967). · Zbl 0156.10701 · doi:10.1007/BF02392081
[85] L. Hörmander, Linear Partial Differential Operators, Die Grundlehren der Math. Wissenschaften, Band 116, Academic Press, New York; Springer-Verlag, Berlin (1963).
[86] L. Hörmander, Linear Partial Differential Operators [Russian translation], Mir, Moscow (1965).
[87] L. H. Hörmander, ”Non-elliptic boundary-value problems,” In: ”Pseudifferential Operators,” A Collection of Translations [Russian translation], Mir, Moscow (1967), pp. 166--296.
[88] A. M. Il’in, ”On a class of ultraparabolic equations,” Dokl. Akad. Nauk SSSR, 159, 1214--1217 (1964).
[89] A. M. Il’in, ”On Dirichlet’s problem for an equation of elliptic type degenerating on some set of interior points of a region,” Dokl. Akad. Nauk SSSR, 102, 9--12 (1955).
[90] A. M. Il’in, ”Degenerate elliptic and parabolic equations,” Mat. Sb., 50, No. 92, 443--498 (1960).
[91] A. M. Il’in, ”Degenerating elliptic and parabolic equations,” Nauchn. Dokl. Vyssh. Shkoly. Fiz.-Mat. Nauki, 2, 48--54 (1958).
[92] A. M. Il’in, A. S. Kalashnikov, and O. A. Oleinik, ”Second-order linear equations of the parabolic type,” Usp. Mat. Nauk, 17, No. 3 (105), 3--146 (1962).
[93] S. D. Ivasishen, ”The Green matrix for a general nonhomogeneous parabolic problem with boundary conditions of any order,” Dokl. Akad. Nauk SSSR, 206, No. 4, 796--7911 (1972).
[94] S. D. Ivasishen and S. D. Eidel’man, ”Study of the Green matrices for the homogeneous parabolic problem,” Tr. Mosk. Mat. Obshch., 23, 179--234 (1970). · Zbl 0224.35046
[95] S. D. Ivasishen and V. P. Lavrenchuk, ”On the solvability of the Cauchy problem and some boundary value problems for general parabolic systems in the class of growing functions,” Dokl. Akad. Nauk USSR, 4, 299--303 (1967).
[96] S. D. Ivasishen and V. P. Lavrenchuk, ”On the correct solvability of general boundary value problems for parabolic systems with growing coefficients,” Ukr. Mat. Zh., 30, No. 1 (1978). · Zbl 0406.35035
[97] V. Ja. Ivriĭ, ”The Cauchy problem for nonstrictly hyperbolic equations,” Dokl. Akad. Nauk SSSR, 197, 517--519 (1971).
[98] T. Jamanaka, ”A refinement of the uniqueness bound of solutions of the Cauchy problem,” Funkcial. Ekvac., 11, 75--86 (1968).
[99] M. V. Keldysh, ”On certain cases of degeneration of equations of elliptic type on the boundary of a domain,” Dokl. Akad. Nauk SSSR, 77, 181--183 (1951).
[100] J. K. Knowles, ”On Saint-Venant’s principle in the two-dimensional linear theory of elasticity,” Arch. Ration. Mech. Anal., 21, No. 1, 1--22 (1966). · doi:10.1007/BF00253046
[101] J. K. Knowles, ”A Saint-Venant principle for a classe of second-order elliptic boundary value problems,” J. Appl. Math. Phys., 18, No. 4, 473--490 (1967). · Zbl 0189.25102 · doi:10.1007/BF01601718
[102] J. K. Knowles, ”On the spatial decay of solutions of the heat equation,” J. Appl. Math. Phys., 22, No. 6, 1050--1056 (1971). · Zbl 0233.35045 · doi:10.1007/BF01590873
[103] J. J. Kohn, ”Pseudo-differential operators and non-elliptic problems,” In: Pseudo-Differential Operators (C. I. M. E., Streza, 1968), Edizioni Cremonese, Rome (1969), pp. 157--165.
[104] J. J. Kohn and L. Nirenberg, ”Degenerate elliptic-parabolic equations of second order,” Commun. Pure Appl. Math., 20, 797--872 (1967). · Zbl 0153.14503 · doi:10.1002/cpa.3160200410
[105] J. J. Kohn and L. Nirenberg, ”An algebra of pseudodifferential operators,” Commun. Pure Appl. Math., 18, 269--305 (1965). · Zbl 0171.35101 · doi:10.1002/cpa.3160180121
[106] J. J. Kohn and L. Nirenberg, ”Non-coercive boundary value problems,” Commun. Pure Appl. Math., 18, 443--492 (1965). · Zbl 0125.33302 · doi:10.1002/cpa.3160180305
[107] A. N. Kolmogorov, ”Zufällige Bewegungen,” Ann. Math., 35, 116--117 (1934). · Zbl 60.1159.01 · doi:10.2307/1968123
[108] V. A. Kondrat’ev, ”Boundary value problems for parabolic equations in closed regions,”Tr. Mosk. Mat. Obs., 15, 400--451 (1966).
[109] S. N. Kruzhkov, ”Boundary value problems for second order elliptic equations,” Mat. Sb., 77, No. 119, 299--334 (1968). · Zbl 0175.11601
[110] L. D. Kudryavtsev, ”On the solution by the variational method of elliptic equations which degenerate on the boundary of the region,” Dokl. Akad. Nauk SSSR, 108, 16--19 (1956). · Zbl 0070.32403
[111] L. D. Kudryavtsev, ”Direct and inverse imbedding theorems. Applications to the solution of elliptic equations by variational methods,” Tr. Mat. Inst. Steklova, 55 (1959).
[112] O. A. Ladyzhenskaya, ”On the uniquenes of the solution of the Cauchy problem for a linear parabolic equation,” Mat. Sb., 27 (69), 175--184 (1950).
[113] V. P. Lavrenchuk, ”General boundary value problems for parabolic systems with growing coefficients,” Dokl. Akad. Nauk USSR. Ser. A, 3, 238--242 (1968). · Zbl 0153.42201
[114] A. Lax, ”On Cauchy’s problem for partial differential equations with multiple characteristics,” Commun. Pure Appl. Math., 9, 135--169 (1956). · Zbl 0073.31701 · doi:10.1002/cpa.3160090203
[115] P. D. Lax, ”Asymptotic solutions of oscillatory initial value problems,” Duke Math. J., 24, 627--546 (1957). · Zbl 0083.31801 · doi:10.1215/S0012-7094-57-02471-7
[116] E. E. Levi, ”Opere,” In: A Cura Dell’unione Matematica Italiana e Col Contributo del Consiglio Nazional delle Ricerche, 2 vols., Edizioni Cremonese, Rome (1959), (1960), pp. 15--18. · Zbl 0091.00108
[117] E. E. Levi, ”Sull’equazione del calore,” Ann. Mat. Pure Appl. Ser. 3, 14, 187--264 (1908). · Zbl 39.0428.02
[118] H. Lewy, ”Neuer Beweis des analytischen Charakters der Lösungen elliptischer Differentialgleichungen,” Math. Ann., 102, 609--619 (1929). · Zbl 55.0882.03 · doi:10.1007/BF01454865
[119] J. L. Lions, Quelques methodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris (1969).
[120] V. E. Lyantse, ”On the Cauchy problem in the field of functions of the real variable,” Usp. Mat. Nauk, 1, No. 4, 42--63 (1949). · Zbl 0049.34806
[121] B. Malgrange, ”Sur une classe d’opérateurs différentiels hypoelliptiques,” Bull. Soc. Math. Fr., 85, 283--306 (1957). · Zbl 0082.09303
[122] M. L. Marinov, ”A priori estimates for solutions of boundary value problems for general parabolic systems in unbounded domains,” Usp. Mat. Nauk, 32, No. 2, 217--218 (1977). · Zbl 0353.35012
[123] M. L. Marinov, ”The existence of solutions of the boundary value problem for general parabolic systems in an unbounded domain,” Vestn. MGU. Ser. Mat., Mekh., No. 6, 56--63 (1977). · Zbl 0388.35036
[124] V. G. Maz’ya, ”The degenerate problem with oblique derivative,” Usp. Mat. Nauk, 25, No. 2 (152), 275--276 (1970).
[125] V. G. Maz’ya and B. P. Panejah, ”Degenerate elliptic pseudodifferential operators on a smooth manifold without boundary,” Funkts. Anal. Prilozhen., 3, No. 2, 91--92 (1969).
[126] V. P. Mikhajlov, ”An existence and uniqueness theorem for the solution of a certain boundary value problem for a parabolic equation in a domain with singular points on the boundary,” Tr. Mat. Inst. Steklova, 91, 47--58 (1967). · Zbl 0186.43002
[127] S. G. Mikhlin, ”Degenerate elliptic equations,” Vestn. LGU, 9, No. 8, 19--48 (1954).
[128] S. G. Mikhlin, The Minimum Problem of a Quadratic Functional, Holden-Day, Inc., San Francisco--London--Amsterdam (1965). · Zbl 0121.32801
[129] C. Miranda, ”Equazioni alle derivate parziali di ttpo ellittico,” In: Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 2, Springer-Verlag, Berlin (1955). · Zbl 0065.08503
[130] S. Mizohata, ”Solutions nulles et solutions non analytiques,” J. Math. Kyoto Univ., 1, No. 1, 271--302 (1962). · Zbl 0106.29601
[131] S. Mizohata and Y. Ohya, ”Sur la condition de E. E. Levi concernant des équations hyperboliques,” Publ. Res. Inst. Math. Sci. Ser. A, 4, 511--526 (1968). · Zbl 0202.37401 · doi:10.2977/prims/1195194888
[132] C. Morrey and L. Nirenberg, ”On the analyticity of the solutions of linear elliptic systems of partial differential equations,” Commun. Pure Appl. Math., 10, 271--290 (1957). · Zbl 0082.09402 · doi:10.1002/cpa.3160100204
[133] T. Nagano, ”Linear differential systems with singularities and an application to transitive Lie algebras,” J. Math. Soc. Jpn., 18, 398--404 (1966). · Zbl 0147.23502 · doi:10.2969/jmsj/01840398
[134] A. B. Nersesyan, ”The Cauchy problem for a second-order hyperbolic equation degenerating on the initial hyperplane,” Dokl. Akad. Nauk SSSR, 181, 798--801 (1968). · Zbl 0172.14502
[135] S. M. Nikol’skii, Approximation of functions of several variables, and imbedding theorems [in Russian], Nauka, Moscow (1969).
[136] L. Nirenberg, ”A strong maximum principle for parabolic equations,” Commun. Pure Appl. Math., 6, 167--177 (1953). · Zbl 0050.09601 · doi:10.1002/cpa.3160060202
[137] O. A. Oleinik, ”Alcuni risultati sulle equazioni lineari e quasi lineari ellittico-paraboliche a derivate parziali del secondo ordine,” Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Ser. I (8), 40, 775--784 (1966). · Zbl 0173.12906
[138] O. A. Oleinik, ”A boundary value problems for elliptic-parabolic linear equations,” Lecture Ser., No. 46, University of Maryland Inst. Fluid Dynamics and Appl. Math. (1965).
[139] O. A. Oleinik, ”The Cauchy problem and the boundary value problem for second-order hyperbolic equations degenerating in a domain and on its boundary,” Dokl. Akad. Nauk SSSR, 169, 525--528 (1966).
[140] O. A. Oleinik, ”On second order hyperbolic equations degenerating in the interior of a region and on its boundary,” Usp. Mat. Nauk, 24, No. 2 (146), 229--230 (1969).
[141] O. A. Oleinik, ”Mathematical problems of boundary layer theory,” Usp. Mat. Nauk, 23, No. 3 (141), 3--65 (1968).
[142] O. A. Oleinik, ”A problem of Fichera,” Dokl. Akad. Nauk SSSR, 157, 1297--1300 (1964).
[143] O. A. Oleinik, ”On the smoothness of solutions of degenerate elliptic and parabolic equations,” Dokl. Akad. Nauk SSSR, 163, 577--580 (1965).
[144] O. A. Oleinik, ”Linear equations of second order with nonnegative characteristic form,” Mat. Sb., 69, No. 111, 111--140 (1966).
[145] O. A. Oleinik, ”On the equations of elliptic type degenerating on the boundary of a region,” Dokl. Akad. Nauk SSSR, 87, 885--888 (1952).
[146] O. A. Oleinik, ”On properties of solutions of certain boundary problems for equations of elliptic type,” Mat. Sb., 30, No. 72, 695--702 (1952).
[147] O. A. Oleinik, ”Discontinuous solutions of non-linear differential equations,” Usp. Mat. Nauk, 12, No. 3 (75), 3--73 (1957).
[148] O. A. Oleinik, ”On the equations of unsteady filtration,” Dokl. Akad. Nauk SSSR, 113, 1210--1213 (1957). · Zbl 0079.31402
[149] O. A. Oleinik, ”On the Cauchy problem for weakly hyperbolic eguations,” Commun. Pure Appl. Math., 23, 569--586 (1970). · doi:10.1002/cpa.3160230403
[150] O. A. Oleinik, ”On the uniqueness of solutions of the Cauchy problem for general parabolic systems in the classes of fast growing functions,” Usp. Mat. Nauk, 29, No. 5, 229--230 (1974).
[151] O. A. Oleinik, ”On the uniqueness of solutions of boundary value problems and the Cauchy problem for general parabolic systems,” Dokl. Akad. Nauk SSSR, 220, No. 6, 34--37 (1975).
[152] O. A. Oleinik, ”On the behavior of solutions of linear parabolic systems of differential equations in unbounded domains,” Usp. Mat. Nauk, 30, No. 2, 219--220 (1975).
[153] O. A. Oleinik, ”On the behaviour of solutions of the Cauchy problem and the boundary value problem for parabolic systems of partial differential equations in unbounded domains,” Rend. Mat. Ser. VI, 8, No. 2, 545--561 (1975). · Zbl 0309.35010
[154] O. A. Oleinik, ”Analyticity of solutions and related methods of the study of partial differential equations,” Univ. Ann. Appl. Math., 11, No. 2, 151--165 (1975).
[155] O. A. Oleinik, Lectures on Partial Differential Equations I [in Russian], Moscow State Univ., Moscow (1976). · Zbl 0385.35009
[156] O. A. Oleinik and G. A. Iosif’yan, ”On the Saint-Venant principle in the planar elasticity theory,” Dokl. Akad. Nauk SSSR, 239, No. 3, 530--533 (1978).
[157] O. A. Oleinik and G. A. Iosif’yan, ”The Saint-Venant principle for the mixed problem of the elasticity theory and applications,” Dokl. Akad. Nauk SSSR, 233, No. 5, 824--827 (1977).
[158] O. A. Oleinik and G. A. Iosif’yan, ”The Saint-Venant principle in the planar elasticity theory and boundary value problems for the biharmonic equation in unbounded domains,” Sib. Mat. Zh., 19, No. 5, 1154--1165 (1978).
[159] O. A. Oleinik and G. A. Iosif’yan, ”A priori estimates for the first boundary value problem for the system of equations of the elasticity theory and their applications,” Usp. Mat. Nauk, 32, No. 5, 197--198 (1977).
[160] O. A. Oleinik, G. A. Iosif’yan, and I. N. Tavkhelidze, ”Estimates of the solution of the biharmonic equation in a neighborhood of irregular points of the boundary and at the infinity,” Usp. Mat. Nauk, 33, No. 3, 181--182 (1978).
[161] O. A. Oleinik and G. A. Iosif’yan, ”On singularities at the boundary points and uniqueness theorems for solutions of the first boundary value problem of elasticity,” Commun. Partial Differ. Equat., 2, No. 9, 937--969 (1977). · Zbl 0381.35068 · doi:10.1080/03605307708820051
[162] O. A. Oleinik and G. A. Iosif’yan, ”Boundary value problems for second order elliptic equations in unbounded domains and Saint-Venant principle,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4, No. 2, 269--290 (1977).
[163] O. A. Oleinik and G. A. Iosif’yan, ”Energy estimates for generalized boundary value problems for second order elliptic equations and applications,” Dokl. Akad. Nauk SSSR, 232, No. 6, 1257--1260 (1977).
[164] O. A. Oleinik and G. A. Iosif’yan, ”An analog of the Saint-Venant principle and the uniqueness of solutions of boundary value problems in unbounded domains for parabolic equations,” Usp. Mat. Nauk, 31, No. 6, 142--166 (1976).
[165] O. A. Oleinik and N. O. Maksimova, ”On the behavior of solutions of nonhomogeneous elliptic systems in unbounded domains,” Tr. Sem. I. G. Petrovskii, 3, 117--137 (1977).
[166] O. A. Oleinik and T. D. Ventcel’, ”The first boundary problem and the Cauchy problem for quasi-linear equations of parabolic type,” Mat. Sb., 41, No. 83, 105--128 (1957).
[167] O. A. Oleinik and E. V. Radkevich, ”On the local smoothness of weak solutions and hypoellipticity of differential equations of second order,” Usp. Mat. Nauk, 26, No. 2 (158), 265--281 (1971).
[168] O. A. Oleinik and E. V. Radkevich, ”On the analyticity of solutions of linear partial differential equations,” Mat. Sb., 90(132), 592--606 (1973).
[169] O. A. Olejnik and E. V. Radkevich, ”Analyticity of solutions of linear differential equations and systems,” Sov. Math., Dokl., 13, 1614--1618 (1972). · Zbl 0266.35001
[170] O. A. Olejnik and E. V. Radkevich, ”On systems of linear differential equations that have nonanalytic solutions,” Usp. Mat. Nauk, 28, No. 5 (173), 247--248 (1972). · Zbl 0266.35001
[171] O. A. Oleinik and E. V. Radkevich, Analyticity and Theorems on the Behavior of Sulutions of General Ellyptic Systems of Differential Equations in Unbounded Domains [in Russian], Institute for Problems of Mechanics, Russian Academy of Sciences, Preprint No. 47, Moscow (1974).
[172] A. A. Oleinik and E. V. Radkevich, ”Method of introducing a parameter for studying evelutionary equations,” Usp. Mat. Nauk, 33, No. 5 (203), 7--76 (1978).
[173] O. A. Oleinik and E. V. Radkevich, ”The analyticity and theorems of the Liouville and Phragmen--Lindelöf type for general parabolic systems of differential equations,” Funct. Anal., 8, No. 4, 59--70 (1974).
[174] O. A. Oleinik and E. V. Radkevich, ”Second-order equations with nonnegative characteristic form,” In: Progress in Science and Tehnology, Series on Contemporary Problems in Mathematics [in Russian], Vol. 18, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1971). · Zbl 0217.41502
[175] I. G. Petrovskii, Lectures on Partial Differential Equations [in Russian], 3rd aug. ed., Fizmatgiz, Moscow (1961).
[176] I. G. Petrovskii, Lectures on the Theory of Ordinary Differential Equations [in Russian], 5th ed., Nauka, Moscow (1964).
[177] R. S. Phillips and L. Sarason, ”Elliptic-parabolic equations of the second order,” J. Math. Mech., 17, 891--917 (1967/68). · Zbl 0163.34402
[178] R. S. Phillips and L. Sarason, ”Singular symmetric positive first order differential operators,” J. Math. Mech., 15, 235--271 (1966). · Zbl 0141.28701
[179] M. Picone, ”Some forgotten almost sixty years old Lincean notes on the theory of second order linear partial differential equations of the elliptic-parabolic type,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. (1968).
[180] M. Picone, ”Teoremi di unicità nei problemi dei valori al contorno per le equazioni ellittiche e paraboliche,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur., 22, No. 2, 275--282 (1913). · Zbl 44.0437.01
[181] M. H. Protter, ”The Cauchy problem for a hyperbolic second order equation with data on the parabolic line,” Can. J. Math., 6, 542--553 (1954). · Zbl 0057.08101 · doi:10.4153/CJM-1954-059-x
[182] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice- Hall, Englewood Cliffs, N. J. (1967). · Zbl 0153.13602
[183] C. Pucci, ”Proprietà di massimo e minimo delle soluzioni di equazioni a derivate parziali del secondo ordine di tipo ellittico e parabolico. I,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. (8), 23, 370--375 (1957). · Zbl 0088.30501
[184] C. Pucci, ”Proprietà di massimo e minimo delle soluzioni di equazioni a derivate parziali del secondo ordine di tipo ellittico e parabolico. II,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. (8), 24, 3--6 (1958). · Zbl 0088.30501
[185] E. V. Radkevich, ”The second boundary value problem for a second order equation with nonnegative characteristic form,” Vestn. Moskov. Univ. Ser. I Mat. Mekh., 22, No. 4, 3--11 (1967). · Zbl 0161.31102
[186] E. V. Radkevich, ”A Schauder type estimate for a certain class of pseudo-differential operators,” Usp. Mat. Nauk, 24, No. 1 (145), 199--200 (1969).
[187] E. V. Radkevich, ”On a theorem of L. Hörmander,” Usp. Mat. Nauk, 24, No. 2 (146), 233--234 (1969).
[188] E. V. Radkevich, ”A priori estimates and hypoelliptic operators with multiple characteristics,” Dokl. Akad. Nauk SSSR, 187, 274--277 (1969). · Zbl 0206.10403
[189] E. V. Radkevich, ”Hypoelliptic operators with multiple characteristics,” Mat. Sb., 79, No. 121, 193--216 (1969). · Zbl 0206.10403
[190] E. V. Radkevich, ”Equations with nonnegative characteristic form,” In: Contemporary Mathematics and Its Applications [in Russian] (2008), in press. · Zbl 1235.35195
[191] P. K. Rashevskii, ”On the joinability of any two points of a completely nonholonomic space by an admissible line,” Uch. Zap. Mosk. Gos. Ped. Inst. im. Libknehta Ser. Fiz.-Mat., 2, 83--94 (1938).
[192] V. M. Petkov, ”Necessary conditions for correctness of the Cauchy problem for hyperbolic systems with multiple characteristics,” Usp. Mat. Nauk, 27, No. 4 (166), 221--222 (1972).
[193] V. M. Petkov, ”Necessary conditions for correctness of the Cauchy problem for non-strictly hyperbolic equations,” Dokl. Akad. Nauk SSSR, 206, 287--290 (1972).
[194] I. G. Petrovskii, ”On some problems of the theory of parial differential equations,” Usp. Mat. Nauk, 1, No. 3-4, 44--70 (1946).
[195] I. G. Petrovskii, ”On the Cauchy problem for systems of linear partial differential equations in the domain of non-analytic functions,” Bull. MGU, Sect. A, 1, No. 7 (1938).
[196] I. G. Petrowsky, ”Sur l’analyticité des solutions des systems d’équations différentielles,” Mat. Sb., 5(47), 3--70 (1939). · Zbl 65.0405.02
[197] P. I. Plotnikov, E. V. Ruban, and J. Sokolovski, ”Inhomogeneous boundary pproblems for compressible Navier--Stokes equatyions,” in press.
[198] P. I. Plotnikov, E. V. Ruban, and J. Sokolovski, ”Inhomogeneous boundary pproblems for compressible Navier--Stokes and transprt equatyions,” in press.
[199] F. Riesz and B. Sz.-Nagy, ”Leçons d’analyse fonctionnelle,” Akad. Kiadó, Budapest (1953). · Zbl 0051.08403
[200] V. S. Ryzhii, ”On the uniqueness of the solution for the Cauchy problem for systems parabolic in the sense of I. G. Petrovskii with growing coefficients,” Zap. Mekh.-Mat. Fac. KhGU and Khar’kov Mat. Obshch., 29, Ser. 4 (1963).
[201] A. J. C. Barre de Saint-Venant, ”De la torsion des prismes,” Mem. Divers Savants, Acad. Sci. Paris, 14, 233--560 (1855).
[202] J. Schauder, ”Über lineare elliptische Differentialgleichungen zweiter Ordnung,” Math. Z., 38, 257--282 (1934). · Zbl 0008.25502 · doi:10.1007/BF01170635
[203] M. Schechter, ”On the Dirichlet problem for second order elliptic equations with coefficients singular at the boundary,” Commun. Pure Appl. Math., 13, 321--328 (1960). · Zbl 0106.07703 · doi:10.1002/cpa.3160130208
[204] L. Schwartz, Théorie des Distributions. Tomes I, II, Actualite’s Sci. Indust., Nos. 1091, 1122, Hermann, Paris (1950), (1951).
[205] L. Schwartz, Methodes Mathematiques pour les Sciences Physiques, Hermann, Paris (1961). · Zbl 0101.41301
[206] L. Schwartz, ”Les équations d’evolution lieés au produit de composition,” Ann. Inst. Fourier (Grenoble), 2, 19--49 (1950). · Zbl 0042.33103
[207] G. E. Shilov, ”Local properties of solutions of partial differential equations with constant coefficients,” Usp. Mat. Nauk, 14, No. 5 (89), 3--44 (1959).
[208] V. G. Sigillito, ”On the spatial decay of solutions of parabolic equations,” J. Apl. Math. Phys., 21, 1078 (1970). · Zbl 0207.10403 · doi:10.1007/BF01594864
[209] M. M. Smirnov, Degenerating Elliptic and Hyperbolic Equations [in Russian], Nauka, Moscow (1966). · Zbl 0152.09404
[210] G. N. Smirnova, ”Linear parabolic equations which degenerate on the boundary of the region,” Sib. Mat. Z., 4, 343--358 (1963).
[211] G. N. Smirnova, ”On the classes of uniqueness of the solutions of the Cauchy problem for parabolic equations,” Dokl. Akad. Nauk SSSR, 153, No. 6, 1269--1272 (1963). · Zbl 0139.05503
[212] G. N. Smirnova, ”The Cauchy problem for parabolic equations degenerating at infinity,” Mat. Sb., 70, No. 4, 591--604 (1966).
[213] S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics [in Russian], LGU, Leningrad (1950). · Zbl 0041.52307
[214] S. L. Sobolev, ”Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales,” Mat. Sb., 1, No. 43, 39--72 (1936).
[215] V. A. Solonnikov, ”On boundary value problems for linear parabolic differential equations of the general form,” Tr. Mat. Inst. Akad. Nauk SSSR, 83 (1965). · Zbl 0164.12502
[216] V. A. Solonnikov, ”On the Green matrices for parabolic boundary value problems,” Zap. Nauch. Semin. LOMI Akad. Nauk SSSR, 14, 256--267 (1969). · Zbl 0202.37501
[217] I. M. Sonin, ”On the classes of uniqueness for degenerating parabolic equations,” Mat. Sb., 85, No. 4, 459--473 (1971).
[218] G. Strang and H. Flaschka, ”The correctness of the Cauchy problem,” Adv. Math., 6, 347--379 (1971). · Zbl 0213.37304 · doi:10.1016/0001-8708(71)90021-1
[219] K. Suzuki, ”The first boundary value problem and the first eigenvalue problem for the elliptic equations degenerate on the boundary,” Publ. Res. Inst. Math. Sci. Ser. A, 3, 299--335 (1967/68). · Zbl 0164.41502 · doi:10.2977/prims/1195195453
[220] K. Suzuki, ”The first boundary value and eigenvalue problems for degenerate elliptic equations. I,” Publ. Res. Inst. Math. Sci. Ser. A, 4, 179--200 (1968/69). · Zbl 0201.13301 · doi:10.2977/prims/1195194874
[221] H. Suzuki, ”Analytic-hypoelliptic differential operators of first order in two independent variables,” J. Math. Soc. Jpn., 16, No. 4, 367--374 (1964). · Zbl 0168.35501 · doi:10.2969/jmsj/01640367
[222] S. Täcklind, ”Sur les class quasianalytiques des solutions des equations aux deriveés partielles du type parabolique,” Nova Acta Regial Societatis Schientiarum, Uppsaliensis, Ser. 4, 10, No. 3, 3--55 (1936).
[223] A. N. Tikhonov, ”Uniqueness theorems for the heat equation,” Mat. Sb., 42, No. 2, 199--215 (1935).
[224] R. Toupin, ”Saint-Venant’s Principle,” Arch. Ration. Mech. Anal., 18, No. 2, 83--96 (1965). · Zbl 0203.26803 · doi:10.1007/BF00282253
[225] F. Trèves, ”Opérateurs différentiels hypoelliptiques,” Ann. Inst. Fourier (Grenoble), 9, 1--73 (1959).
[226] Trěves, ”Hypoelliptic partial differential equations of principal type with analytic coefficients,” Commun. Pure Appl. Math., 23, No. 4, 637--651 (1970). · Zbl 0192.44502 · doi:10.1002/cpa.3160230407
[227] F. Tricomi, ”Sulle equazioni lineari alle derivate parziali di secondo ordine, di tipo misto,” Rend. Reale Accad. Lincei. (5), 14, 134--247 (1923). · Zbl 49.0346.01
[228] Ya. M. Tsoraev, ”On the classes of uniqueness for the solution of the first boundary value problem in unbounded domains and the Cauchy problems for nonuniform parabolic equations,” Vestn. MGU. Ser. Mat., Mekh., No. 3, 38--44 (1970). · Zbl 0216.38001
[229] M. I. Vishik, ”On the first boundary problem for elliptic equations degenerating on the boundary of a region,” Dokl. Akad. Nauk SSSR, 93, 9--12 (1953).
[230] M. I. Vishik, ”Boundary-value problems for elliptic equations degenerating on the boundary of a region,” Mat. Sb., 35 (77), 513--568 (1954).
[231] M. I. Vishik and V. V. Grushin, ”On a class of degenerate elliptic equations,” Mat. Sb., 79 (121), 3--36 (1969). · Zbl 0238.35078
[232] M. I. Vishik and V. V. Grushin, ”Boundary value problems for elliptic equations degenerate on the boundary of a domain,” Mat. Sb., 80 (122), 455--491 (1969). · Zbl 0238.35078
[233] M. I. Vishik and V. V. Grushin, ”Elliptic pseudodifferential operators on a closed manifold which degenerate on a submanifold,” Dokl. Akad. Nauk SSSR, 189, 16--19 (1969). · Zbl 0238.35078
[234] M. I. Vishik and G. I. Eskin, ”Convolution equations in a bounded region,” Usp. Mat. Nauk, 20, No. 3 (123), 89--152 (1965). · Zbl 0152.34202
[235] L. G. Volevich, ”Hypoelliptic equations in convolutions,” Dokl. Akad. Nauk SSSR, 168, 1232--1235 (1966). · Zbl 0147.34602
[236] L. F. Volevich, ”On a problem of linear programming appearing in differential equations,” Usp. Mat. Nauk, XVIII, No. 3 (111), 155--162 (1963). · Zbl 0178.11001
[237] L. R. Volevich, ”The Cauchy problem for hypoelliptic differential operators in the classes of fast growing functions,” Usp. Mat. Nauk, 25, No. 1, 191--192 (1970). · Zbl 0202.14504
[238] L. R. Volevich and S. G. Gindikin, ”The Cauchy problem and related problems for convolution equations,” Usp. Mat. Nauk, 27, No. 4, 65--143 (1872).
[239] L. G. Volevich and B. P. Panejah, ”Some spaces of generalized functions and embedding theorems,” Usp. Mat. Nauk, 20, No. 1 (121), 3--74 (1965). · Zbl 0135.16501
[240] A. I. Vol’pert and S. I. Hudjaev, Cauchy’s problem for second order quasi-linear degenerate parabolic equations,” Mat. Sb., 78 (120), 374--396 (1969).
[241] N. D. Vvedenskaja, ”On a boundary problem for equations of elliptic type degenerating on the boundary of a region,” Dokl. Akad. Nauk SSSR, 91, 711--714 (1953).
[242] M. Weber, ”The fundamental solution of a degenerate partial differential equation of parabolic type,” Trans. Am. Math. Soc., 71, 24--37 (1951). · Zbl 0043.09901 · doi:10.1090/S0002-9947-1951-0042035-0
[243] N. Weck, ”An explicit Saint-Venant’s principle in three-dimensional elasticity,” Lecture Notes in Math., No. 564, 518--526 (1976). · Zbl 0352.73013
[244] A. Weinstein, ”Generalized axially symmetric potential theory,” Bull. Am. Math. Soc., 59, 20--38 (1953). · Zbl 0053.25303 · doi:10.1090/S0002-9904-1953-09651-3
[245] K. Yosida, Functional Analysis, Die Grundlehren der Mathematischen Wissenschaften, Band 123, Academic Press, New York; Springer-Verlag, Berlin (1965). · Zbl 0126.11504
[246] E. C. Zachmanoglou, ”Propagation of zeros and uniqueness in the Cauchy problem for first order partial differential equations,” Arch. Ration. Mech. Anal., 38, 178--188 (1970). · Zbl 0199.15903 · doi:10.1007/BF00251658
[247] Ya. I. Zhitomirskii, ”Cauchy problem for parabolic systems of linear partial differential equations with growing coefficients,” Izv. Vuzov. Mat, No. 1 (1959), 55--74.
[248] Ya. I. Zhitomirskii, ”Classes of the uniqueness for the solution of the Cauchy problem,” Dokl. Akad. Nauk SSSR, 172, No. 6, 1258--1261 (1967).
[249] Ya. I. Zhitomirskii, ”Classes of the uniqueness for the solution of the Cauchy problem for linear equations with fast growing coefficients,” Izv. Akad. Nauk SSSR. Ser. Mat., 31, No. 5, 1159--1178 (1967).
[250] Ya. I. Zhitomirskii, ”Classes of the uniqueness for the solution of the Cauchy problem for linear equations with growing coefficients,” Izv. Akad. Nauk SSSR. Ser. Mat., 31, No. 4, 763--782 (1967).
[251] G. N. Zolotarev, ”On the uniqueness of the solution of the Cauchy problem for systems parabolic in the sense of I. G. Petrovskii,” Izv. Vuzov. Mat., No. 2 (3), 118--135 (1958).
[252] G. N. Zolotarev, ”On the upper estimates of classes of the uniqueness for the Cauchy problem for systems of partial differential equations,” In: Nauch. Dokl. Vyssh. Shkoly, No. 2 (1958), pp. 37--40.