zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A reverse analysis of the Sylvester-Gallai theorem. (English) Zbl 1202.03023
The author deals with three proofs of the Sylvester-Gallai theorem which lead to three different and incompatible axiom systems. The theorem can be stated as follows: If the points of a finite set $S$ are not all on a line, then there is a line through exactly two of the points. The present, very interesting, article shows many historical facts. After an introduction the author studies the Steinberg-Coxeter proof, Kelly’s proof, and Moszyńska geometries. The author writes in the paper’s abstract: “In particular, we show that proofs respecting the purity of the method, using only notions considered to be part of the statement of the theorem to be proved, are not always the simplest, as they may require axioms which proofs using extraneous predicates do not rely upon.”

MSC:
03B30Foundations of classical theories
51A20Configuration theorems (geometry)
51K05General theory of distance geometry
WorldCat.org
Full Text: DOI