zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A class number problem in the cyclotomic $\Bbb Z_3$-extension of $\Bbb Q$. (English) Zbl 1205.11116
Let $\Omega_n=\Bbb Q\left(2\cos\bigl(\frac{2\pi}{3^{n+1}}\bigr)\right)$. This is the $n$-th lyer of the cyclotomic $\Bbb Z_3$-extension of $\Bbb Q$. Let $h_n$ be the class number of $\Omega_n$. Let $l\geq 5$ be a prime number and $3^s$ the exact power of $3$ dividing $l^2-1$. Put $$m_l=3s+2+[\log_3(l-1)]+\left[\log_3\frac{l-1}{2}\right]+[\log_3(2s+1+[\log_3(l-1)])],$$ where $[x]$ denotes the greatest integer not exceeding $x$. The author proves that if $l$ does not divide $h_{m_l}$, then $l$ does not divide $h_n$ for any positive integer $n$. As a corollary, if $l<10000$ then $l$ does not divide $h_n$ for any positive integer $n$.

11R23Iwasawa theory
11R29Class numbers, class groups, discriminants
11R18Cyclotomic extensions
Full Text: DOI
[1] T. Fukuda and K. Komatsu, Weber’s Class Number Problem in the Cyclotomic $\Z_2$-Extension of $\Q$, to appear in Experiment., Math. · Zbl 1189.11033
[2] M. Aoki and T. Fukuda, An Algorithm for Computing $p$-Class Groups of Abelian Number Fields, Algorithmic Number Theory, 56-71,Lecture Notes in Computer Science, vol. 4076, Springer, Berlin, 2006. · Zbl 1143.11368 · doi:10.1007/11792086
[3] K. Horie, Certain Primary Components of the Ideal Class Group of the $ \Z_p $-Extension over the Rationals, Tohoku Math. J., 59 (2007), 259-291. · Zbl 1202.11050 · doi:10.2748/tmj/1182180736
[4] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg, 20 (1956), 257-258. · Zbl 0074.03002
[5] F. J. van der Linden, Class Number Computations of Real Abelian Number Fields, Math. Comp., 39 (1982), 693-707. JSTOR: · Zbl 0505.12010 · doi:10.2307/2007347 · http://links.jstor.org/sici?sici=0025-5718%28198210%2939%3A160%3C693%3ACNCORA%3E2.0.CO%3B2-B&origin=euclid
[6] J. M. Masley, Class numbers of real cyclic number fields with small conductor, Compositio Math., 37 (1978), 297-319. · Zbl 0428.12003 · numdam:CM_1978__37_3_297_0 · eudml:89385
[7] L. C. Washington, Introduction to Cyclotomic Fields , 2nd edition, Graduate Texts in Math. 83, Springer-Verlag, New York, Heidelberg, Berlin, 1997. · Zbl 0966.11047