zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Cramér vs. Cramér. On Cramér’s probabilistic model for primes. (English) Zbl 1226.11096
Summary: In the 1930’s {\it H. Cramér} [8. Skand. Mat.-Kongr. 1934, 107--115 (1935; Zbl 0011.40801 and JFM 61.1051.01)] created a probabilistic model for primes. He applied his model to express a very deep conjecture about large differences between consecutive primes. The general belief was for a period of 50 years that the model reflects the true behaviour of primes when applied to proper problems. It was a great surprise therefore when {\it H. Maier} discovered in 1985 [Mich. Math. J. 32, 221--225 (1985; Zbl 0569.10023)] that the model gives wrong predictions for the distribution of primes in short intervals. In the paper we analyse this phenomenon, and describe a simpler proof of Maier’s theorem which uses only tools available at the mid thirties. We present further a completely different contradiction between the model and the reality. Additionally, we show that, unlike to the contradiction discovered by Maier, this new contradiction would be present in essentially all Cramér type models using independent random variables.

MSC:
11N05Distribution of primes
WorldCat.org
Full Text: Euclid
References:
[1] A.A. Buchstab, Asymptotic estimates of a general number-theoretic function (Russian), Mat. Sbornik (N.S.) 2 (44) (1937), 1239--1246. · Zbl 63.0902.01
[2] H. Cramér, Some theorems concerning prime numbers, Arkiv f. Math. Astr. Fys. 15 , No. 5 (1920), 1--33. · Zbl 47.0156.01
[3] H. Cramér, Prime numbers and probability, Skand. Math. Kongr. 8 (1935), 107--115. · Zbl 0011.40801
[4] H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arith. 2 (1936), 23--46. · Zbl 0015.19702 · eudml:205441
[5] H. Davenport, Multiplicative Number Theory , Revised by Hugh L. Montgomery, 2$^\hbox\rrmm nd$ edition, Springer, Berlin, Heidelberg, New York, 1980. · Zbl 0453.10002
[6] P.X. Gallagher, A large sieve density estimate near $\sigma = 1$, Invent Math. 11 (1970), 329--339. · Zbl 0219.10048 · doi:10.1007/BF01403187 · eudml:142061
[7] A. Granville, Harald Cramér and the Distribution of Prime Numbers, Scand. Actuarial J. 1995, No. 1, 12--28. · Zbl 0833.01018 · doi:10.1080/03461238.1995.10413946
[8] A. Granville, Unexpected irregularities in the distribution of prime numbers, in: Proceedings of the International Congress of Mathematicians , Vol. 1, 2 (Zürich, 1994), 388--399, Birkhäuser, Basel, 1995. · Zbl 0843.11043
[9] H. Iwaniec, The sieve of Eratosthenes--Legendre, Ann Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), 257--268. · Zbl 0346.10029 · numdam:ASNSP_1977_4_4_2_257_0 · eudml:83749
[10] H. von Koch, Sur la distribution des nombres premiers, Acta Math. 24 (1901), 159--182. · Zbl 31.0201.02 · doi:10.1007/BF02403071
[11] J.E. Littlewood, Sur la distribution des nombres premiers, Comptes Rendus Acad. Sci. Paris 158 (1914), 1869--1872. · Zbl 45.0305.01
[12] H. Maier, Primes in short intervals, Michigan Math. J. 32 (1985), 221--225. · Zbl 0569.10023 · doi:10.1307/mmj/1029003189
[13] E. Phragmén, Sur le logarithme intégral et la fonction $f(x)$ de Riemann, Ofversight Kongl. Vet.-Akad. Förh. Stockholm 48 (1891), 599--616. · Zbl 23.0299.03
[14] J. Pintz, On the remainder term of the prime number formula I. On a problem of Littlewood, Acta Arith. 36 (1980), 341--365. · Zbl 0439.10028 · eudml:205680
[15] G. Pólya, Heuristic reasoning in the theory of numbers, Amer. Math. Monthly 66 (1959), 375--384. JSTOR: · Zbl 0092.04901 · doi:10.2307/2308748 · http://links.jstor.org/sici?sici=0002-9890%28195905%2966%3A5%3C375%3AHRITTO%3E2.0.CO%3B2-5&origin=euclid
[16] Sz.Gy. Révész, Effective oscillation theorems for a general class of real-valued remainder terms, Acta Arith. 49 (1988), 481--505. · Zbl 0587.10022
[17] C.L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83--86. · Zbl 0011.00903 · http://matwbn.icm.edu.pl/ksiazki/aa/aa1/aa117.pdf · eudml:205054
[18] P. Turán, On the remainder term of the prime number formula I, Acta Math. Hungar. 1 (1950), 48--63. · Zbl 0040.01601 · doi:10.1007/BF02022552