zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Algebraic properties of Manin matrices. I. (English) Zbl 1230.05043
Summary: We study a class of matrices with noncommutative entries, which were first considered by Yu. I. Manin in 1988 in relation with quantum group theory. They are defined as “noncommutative endomorphisms” of a polynomial algebra. More explicitly their defining conditions read: 1) elements in the same column commute; 2) commutators of the cross terms are equal: $[M_{ij}, M_{kl}] = [M_{kj}, M_{il}]$ (e.g. $[M_{11},M_{22}] = [M_{21},M_{12}]$). The basic claim is that despite noncommutativity many theorems of linear algebra hold true for Manin matrices in a form identical to that of the commutative case. Moreover in some examples the converse is also true. The present paper gives a complete list and detailed proofs of algebraic properties of Manin matrices known up to the moment; many of them are new. In particular we provide complete proofs that an inverse to a Manin matrix is again a Manin matrix and for the Schur formula for the determinant of a block matrix; we generalize the noncommutative Cauchy-Binet formulas discovered recently [{\it S. Caracciolo, A. D. Sokal} and {\it A. Sportiello}, Electron. J. Comb. 16, No. 1, Research Paper R103, 43 p. (2009; Zbl 1192.15001), \url{arXiv:0809.3516}], which includes the classical Capelli and related identities. We also discuss many other properties, such as the Cramer formula for the inverse matrix, the Cayley-Hamilton theorem, Newton and MacMahon-Wronski identities, Plücker relations, Sylvester’s theorem, the Lagrange-Desnanot-Lewis Caroll formula, the Weinstein-Aronszajn formula, some multiplicativity properties for the determinant, relations with quasideterminants, calculation of the determinant via Gauss decomposition, conjugation to the second normal (Frobenius) form, and so on and so forth. We refer to [{\it A. V. Chervov} and {\it G. Falqui}, J. Phys. A, Math. Theor. 41, No. 19, Article ID 194006, 28 p. (2008; Zbl 1151.81022), \url{arXiv:0711.2236} and {\it V. Rubtsov, A. V. Silantev} and {\it D. V. Talalaev}, SIGMA, Symmetry Integrability Geom. Methods Appl. 5, Paper 110, 22 p., electronic only (2009; Zbl 1190.37079)] for some applications. The bibliography contains 118 items.

MSC:
05A19Combinatorial identities, bijective combinatorics
15B33Matrices over special rings (quaternions, finite fields, etc.)
81R50Quantum groups and related algebraic methods in quantum theory
WorldCat.org
Full Text: DOI arXiv
References:
[1] Adjamagbo, K.: Panorama de la theorique des determinants sur un anneau non commutatif, Bull. sci. Math. 117, 401-420 (1993) · Zbl 0807.16031
[2] Akhmedov, E.; Dolotin, V.; Morozov, A.: Comment on the surface exponential for tensor fields, (2007)
[3] Babelon, O.; Talon, M.: Riemann surfaces, separation of variables and classical and quantum integrability, Phys. lett. A 312, 71-77 (2003) · Zbl 1071.37510 · doi:10.1016/S0375-9601(03)00611-X
[4] Banica, T.; Bichon, J.; Collins, B.: Quantum permutation groups: A survey, Banach center publ. 78, 13-34 (2007) · Zbl 1140.46329
[5] Bareiss, E. H.: Sylvester’s identity and multistep integer-preserving Gaussian elimination, Math. comp. 22, 565-578 (1968) · Zbl 0187.09701 · doi:10.2307/2004533
[6] Berenstein, A.; Zelevinsky, A.: String bases for quantum groups of type ar, Adv. sov. Math. 16, 51-89 (1993) · Zbl 0794.17007
[7] Biane, P.: Approximate factorization and concentration for characters of symmetric groups, Int. math. Res. not. 2001, 179-192 (2001) · Zbl 1106.20304 · doi:10.1155/S1073792801000113
[8] Bracken, A.; Green, H.: Vector operators and a polynomial identity for $SO(n)$, J. math. Phys. 12, 2099-2106 (1971)
[9] Bressoud, D.: Proofs and confirmations: the story of the alternating sign matrix conjecture, (1999) · Zbl 0944.05001
[10] Caldero, P.; Marsh, R.: A multiplicative property of quantum flag minors II, J. London math. Soc. (2) 69, 608-622 (2004) · Zbl 1053.17009 · doi:10.1112/S0024610704005174
[11] Capelli, A.: Uber die zuruckfuhrung der cayley’schen operation $\Omega $ auf gewohnliche polar-operationen, Math. ann. 29, 331-338 (1887) · Zbl 19.0151.01 · http://jfm.sub.uni-goettingen.de/JFM/digit.php?an=JFM+19.0151.01
[12] Caracciolo, S.; Sportiello, A.; Sokal, A. D.: Noncommutative determinants, Cauchy -- binet formulae, and capelli-type identities. I. generalizations of the capelli and turnbull identities · Zbl 1192.15001 · emis:journals/EJC/Volume_16/Abstracts/v16i1r103.html
[13] Cartier, P.; Foata, D.: Problemes combinatoires de commutation et rearrangements, Lecture notes in math. 85 (1969) · Zbl 0186.30101
[14] Chari, V.; Pressley, A.: A guide to quantum groups, (1994) · Zbl 0839.17009
[15] Chervov, A.: Traces of creation-annihilation operators and Fredholm’s formulas, Funct. anal. Appl. 32, 71-74 (1998) · Zbl 0921.47013 · doi:10.1007/BF02465766
[16] Chervov, A.; Falqui, G.: Manin matrices and talalaev’s formula, J. phys. A 41, 194006 (2008) · Zbl 1151.81022 · doi:10.1088/1751-8113/41/19/194006
[17] Chervov, A.; Molev, A.: On higher order sugawara operators · Zbl 1225.17031 · doi:10.1093/imrn/rnn168
[18] Chervov, A.; Talalaev, D.: Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence · Zbl 1179.82052
[19] Chervov, A.; Falqui, G.; Rybnikov, L.: Limits of Gaudin algebras, quantization of bending flows, jucys -- murphy elements and Gelfand -- tsetlin bases, SIGMA symmetry integrability geom. Methods appl. 5, 029 (2009) · Zbl 1275.17026
[20] A. Chervov, G. Falqui, V. Rubtsov, A. Silantiev, in press
[21] Demidov, E. E.; Manin, Yu.I.; Mukhin, E. E.; Zhdanovich, D. V.: Non-standard quantum deformations of $GL(n)$ and constant solutions of the Yang -- Baxter equation, Progr. theoret. Phys. suppl. 102, 203-218 (1990) · Zbl 0784.17017
[22] Dieudonné, J.: LES determinantes sur un corps non-commutatif, Bull. soc. Math. France 71, 27-45 (1943) · Zbl 0028.33904 · numdam:BSMF_1943__71__27_0
[23] Dodgson, C. L.: Condensation of determinants, Proc. R. Soc. London 15, 150-155 (1866)
[24] Domokos, M.: Cayley -- Hamilton theorem for $2\times 2$ matrices over the Grassmann algebra, J. pure appl. Algebra 133, 69-81 (1998) · Zbl 0941.15026 · doi:10.1016/S0022-4049(97)00184-9
[25] Domokos, M.; Lenagan, T. H.: The traces of quantum powers commute · Zbl 1081.16047
[26] Enriquez, B.; Rubtsov, V.: Hitchin systems, higher Gaudin operators and r-matrices, Math. res. Lett. 3, 343-357 (1996) · Zbl 0871.58038
[27] Enriquez, B.; Rubtsov, V.: Commuting families in skew fields and quantization of Beauville’s fibration, Duke math. J. 119, 197-219 (2003) · Zbl 1052.53065 · doi:10.1215/S0012-7094-03-11921-3 · euclid:dmj/1082744731
[28] Etingof, P.; Pak, I.: An algebraic extension of the macmahon master theorem, Proc. amer. Math. soc. 136, 2279-2288 (2008) · Zbl 1191.05018 · doi:10.1090/S0002-9939-08-09017-5
[29] Ewen, H.; Ogievetsky, O.; Wess, J.: Quantum matrices in two dimensions, Lett. math. Phys. 22, 297-305 (1991) · Zbl 0754.17012 · doi:10.1007/BF00405605
[30] Faddeev, L. D.; Takhtajan, L. A.: Hamiltonian methods in the theory of solitons, (1987) · Zbl 0632.58004
[31] Faddeev, L. D.; Takhdadjan, L. A.; Sklyanin, E. K.: Quantum inverse problem method I, Theoret. math. Phys. 40, 194-220 (1979)
[32] Feigin, B.; Frenkel, E.; Reshetikhin, N.: Gaudin model, Bethe ansatz and critical level, Comm. math. Phys. 166, 27-62 (1994) · Zbl 0812.35103 · doi:10.1007/BF02099300
[33] Fioresi, R.: Commutation relations among generic quantum minors in $Oq(Mn(k))$, J. algebra 280, 655-682 (2004) · Zbl 1072.16035 · doi:10.1016/j.jalgebra.2004.06.003
[34] Flaschka, H.; Millson, J.: Bending flows for sums of rank one matrices, Canad. J. Math. 57, 114-158 (2005) · Zbl 1076.53106 · doi:10.4153/CJM-2005-006-3
[35] Foata, D.: A noncommutative version of the matrix inversion formula, Adv. math. 31, 330-349 (1979) · Zbl 0418.15004 · doi:10.1016/0001-8708(79)90049-5
[36] Foata, D.; Han, G. -H.: A basis for the right quantum algebra and the ”1=q” principle, J. algebraic combin. 27, 163-172 (2008) · Zbl 1145.05004 · doi:10.1007/s10801-007-0080-5
[37] Foata, D.; Zeilberger, D.: Combinatorial proofs of capelli’s and turnbull’s identities from classical invariant theory, Electron. J. Combin. 1, R1 (1994) · Zbl 0810.05008 · emis:journals/EJC/Volume_1/volume1.html#R1
[38] Freidel, L.; Maillet, J. M.: Quadratic algebras and integrable systems, Phys. lett. B 262, 278-284 (1991)
[39] Garoufalidis, S.; Le, T. T. Q.; Zeilberger, D.: The quantum macmahon master theorem, Proc. natl. Acad. sci. USA 103, 13928-13931 (2006) · Zbl 1170.05012 · doi:10.1073/pnas.0606003103
[40] Gaudin, M.: Diagonalisation d’une classe d’hamiltoniens de spin, J. phys. 37, 1087-1098 (1976)
[41] Gelfand, I. M.; Retakh, V. S.: Determinants of matrices over non commutative rings, Funct. anal. Appl. 25, 91-102 (1991) · Zbl 0748.15005 · doi:10.1007/BF01079588
[42] Gelfand, I. M.; Retakh, V. S.: Theory of noncommutative determinants, and characteristic functions of graphs, Funct. anal. Appl. 26, 231-246 (1992) · Zbl 0799.15003 · doi:10.1007/BF01075044
[43] Gelfand, I. M.; Retakh, V. S.: Quasideterminants, I, Selecta math. 3, 517-546 (1997) · Zbl 0919.16011 · doi:10.1007/s000290050019
[44] Gelfand, I. M.; Krob, D.; Lascoux, A.; Leclerc, B.; Retakh, V. S.; Thibon, J. -Y.: Noncommutative symmetric functions, Adv. math. 112, 218-348 (1995) · Zbl 0831.05063 · doi:10.1006/aima.1995.1032
[45] Gelfand, I.; Gelfand, S.; Retakh, V.; Wilson, R.: Quasideterminants, Adv. math. 193, 56-141 (2005) · Zbl 1079.15007 · doi:10.1016/j.aim.2004.03.018
[46] Ginzburg, V.: Calabi -- Yau algebras
[47] Goodearl, K. R.: Commutation relations for arbitrary quantum minors, Pacific J. Math. 228, 63-102 (2006) · Zbl 1125.16034 · doi:10.2140/pjm.2006.228.63
[48] Gould, M. D.: Characteristic identities for semi-simple Lie algebras, J. aust. Math. soc. B 26, 257-283 (1985) · Zbl 0563.17009 · doi:10.1017/S0334270000004501
[49] Gould, M.: Identities and characters for finite groups, J. phys. A 20, 2657-2665 (1987) · Zbl 0632.20008 · doi:10.1088/0305-4470/20/10/009
[50] Gould, M. D.; Zhang, R. B.; Bracken, A. J.: Generalized Gelfand invariants of quantum groups, J. phys. A 24, 937-943 (1991) · Zbl 0727.17008 · doi:10.1088/0305-4470/24/5/009
[51] Gould, M. D.; Zhang, R. B.; Bracken, A. J.: Generalized Gelfand invariants and characteristic identities for quantum groups, J. math. Phys. 32, 2298-2303 (1991) · Zbl 0747.17020 · doi:10.1063/1.529152
[52] Green, H. S.: Characteristic identities for generators of $GL(n);O(n)$ and $SP(n)$, J. math. Phys. 12, 2106-2113 (1971) · Zbl 0229.17008 · doi:10.1063/1.1665508
[53] Gurevich, D.; Pyatov, P.; Saponov, P.: The Cayley -- Hamilton theorem for quantum matrix algebras of $GL(m|n)$ type, St. Petersburg math. J. 17, 119-135 (2006) · Zbl 1132.16033
[54] Hai, P. H.; Lorenz, M.: Koszul algebras and the quantum macmahon master theorem, Bull. lond. Math. soc. 39, 667-676 (2007) · Zbl 1122.05008
[55] Hopkins, M. J.; Molev, A. I.: A q-analogue of the centralizer construction and skew representations of the quantum affine algebra, SIGMA symmetry integrability geom. Methods appl. 2 (2006) · Zbl 1138.81028
[56] Howe, R.: Remarks on classical invariant theory, Trans. amer. Math. soc. 313, 539-570 (1989) · Zbl 0674.15021 · doi:10.2307/2001418
[57] Isaev, A.; Ogievetsky, O.; Pyatov, P.: On quantum matrix algebras satisfying the Cayley -- Hamilton -- Newton identities, J. phys. A 32, L115-L121 (1999) · Zbl 0929.17016 · doi:10.1088/0305-4470/32/9/002
[58] Itoh, M.: Explicit Newton’s formulas for gln, J. algebra 208, 687-697 (1998) · Zbl 0911.17004 · doi:10.1006/jabr.1998.7510
[59] Itoh, M.: A Cayley -- Hamilton theorem for the skew capelli elements, J. algebra 242, 740-761 (2001) · Zbl 0981.17006 · doi:10.1006/jabr.2001.8824
[60] Jarvis, P. D.; Mcanally, D. S.: Generalized characteristic identities and applications, , 215-224 (1995) · Zbl 1049.17500
[61] Kantor, I.; Trishin, I.: On the Cayley -- Hamilton equation in the supercase, Comm. algebra 27, 233-259 (1999) · Zbl 0945.16038 · doi:10.1080/00927879908826430
[62] Kato, T.: Perturbation theory for linear operators, Grundlehren math. Wiss. 132 (1966) · Zbl 0148.12601
[63] Kazakov, V.; Sorin, A.; Zabrodin, A.: Supersymmetric Bethe ansatz and Baxter equations from discrete Hirota dynamics, Nuclear phys. B 790, 345-413 (2008) · Zbl 1150.82009 · doi:10.1016/j.nuclphysb.2007.06.025
[64] Kelly, A. C.; Lenagan, T. H.; Rigal, L.: Ring theoretic properties of quantum grassmannians, J. algebra appl. 3, 9-30 (2004) · Zbl 1081.16048 · doi:10.1142/S0219498804000630
[65] Kirillov, A. A.: Introduction to family algebras, Mosc. math. J. 1, 49-63 (2001) · Zbl 0981.15013
[66] Konvalinka, M.: A generalization of foata’s fundamental transformation and its applications to the right-quantum algebra
[67] Konvalinka, M.: Non-commutative Sylvester’s determinantal identity, Electron. J. Combin. 14 (2007) · Zbl 1121.05012 · emis:journals/EJC/Volume_14/Abstracts/v14i1r42.html
[68] Konvalinka, M.; Pak, I.: Non-commutative extensions of the macmahon master theorem, Adv. math. 193, 56-141 (2005)
[69] Krob, D.; Leclerc, B.: Minor identities for quasi-determinants and quantum determinants, Comm. math. Phys. 169, 1-23 (1995) · Zbl 0829.15024 · doi:10.1007/BF02101594
[70] Lauve, A.: Quantum- and quasi-plücker coordinates, J. algebra 296, 440-461 (2006) · Zbl 1119.17008 · doi:10.1016/j.jalgebra.2005.12.004
[71] Lauve, A.; Taft, E. J.: A class of left quantum groups modeled after $SLq(r)$, J. pure appl. Algebra 208, 797-803 (2007) · Zbl 1125.16028 · doi:10.1016/j.jpaa.2006.03.017
[72] Leclerc, B.; Zelevinsky, A.: Quasicommuting families of quantum plücker coordinates, Amer. math. Soc. transl. Ser. 2 181, 85-108 (1998) · Zbl 0894.14021
[73] Macfarlane, A. J.; Pfeiffer (Cambridge), H.: On characteristic equations, trace identities and Casimir operators of simple Lie algebras, J. math. Phys. 41, 3192-3225 (2000) · Zbl 0985.17005 · doi:10.1063/1.533300
[74] Maillet, J. -M.: Lax equations and quantum groups, Phys. lett. B 245, 480-486 (1990)
[75] Manin, Yu.: Some remarks on Koszul algebras and quantum groups, Ann. inst. Fourier 37, 191-205 (1987) · Zbl 0625.58040 · doi:10.5802/aif.1117 · numdam:AIF_1987__37_4_191_0
[76] Manin, Yu.: Quantum groups and non commutative geometry, (1988) · Zbl 0724.17006
[77] Manin, Yu.: Topics in non commutative geometry, M.B. Porter lectures, (1991) · Zbl 0724.17007
[78] Manin, Yu.: Notes on quantum groups and quantum de Rham complexes, Theoret. and math. Phys. 92, 997-1023 (1992) · Zbl 0810.17003 · doi:10.1007/BF01017077
[79] Molev, A. I.: Yangians and their applications, , 907-959 (2003) · Zbl 1086.17008
[80] Molev, A. I.: Skew representations of twisted yangians, Selecta math. (N.S.) 12, 1-38 (2006) · Zbl 1143.17005 · doi:10.1007/s00029-006-0020-6
[81] Molev, A.: Yangians and classical Lie algebras, Math. surveys monogr. 143 (2007) · Zbl 1141.17001
[82] Molev, A. I.; Ragoucy, E.: Symmetries and invariants of twisted quantum algebras and associated Poisson algebras, Rev. math. Phys. 20, 173-198 (2008) · Zbl 1190.17009 · doi:10.1142/S0129055X08003250
[83] Molev, A.; Nazarov, M.; Olshanski, G.: Yangians and classical Lie algebras, Russian math. Surveys 51, 205-282 (1996) · Zbl 0876.17014 · doi:10.1070/RM1996v051n02ABEH002772
[84] Molinari, L. G.: Determinants of block tridiagonal matrices, Linear algebra appl. 429, 2221-2226 (2008) · Zbl 1154.15009 · doi:10.1016/j.laa.2008.06.015
[85] Muhlbach, G.; Gasca, M.: A generalization of Sylvester’s identity on determinants and some applications, Linear algebra appl. 66, 221-234 (1985) · Zbl 0576.15005 · doi:10.1016/0024-3795(85)90134-X
[86] T. Muir, The Theory of Determinants in the Historical Order of Development · Zbl 49.0078.01
[87] Mukhin, E.; Tarasov, V.; Varchenko, A.: A generalization of the capelli identity · Zbl 1287.17026
[88] Nazarov, M.: Quantum Berezinian and the classical capelli identity, Lett. math. Phys. 21, 123-131 (1991) · Zbl 0722.17004 · doi:10.1007/BF00401646
[89] Nazarov, M.; Tarasov, V.: Yangians and Gelfand -- zetlin bases, Publ. res. Inst. math. Sci. 30, 459-478 (1994) · Zbl 0929.17009 · doi:10.2977/prims/1195165907
[90] O’brien, D.; Cant, A.; Carey, A.: On characteristic identities for Lie algebras, Ann. inst. H. Poincarè (A) phys. Theor. 26, 405-429 (1977) · Zbl 0359.17003 · numdam:AIHPA_1977__26_4_405_0
[91] Ogievetsky, O.; Vahlas, A.: The relation between two types of characteristic equations for quantum matrices, Lett. math. Phys. 65, 49-57 (2003) · Zbl 1108.17004 · doi:10.1023/A:1027316209695
[92] Okounkov, A.: Quantum immanants and higher capelli identities, Transform. groups 1, 99-126 (1996) · Zbl 0864.17014 · doi:10.1007/BF02587738
[93] Okounkov, A.: Young basis, Wick formula and higher capelli identities, Int. math. Res. not. 17, 817-839 (1996) · Zbl 0878.17008 · doi:10.1155/S1073792896000505
[94] Okounkov, A.; Olshansky, G.: Shifted Schur functions, St. Petersburg math. J. 9, 239-300 (1998)
[95] Perelomov, A. M.; Popov, V. S.: Casimir operators for $U(n)$ and $SU(n)$, Sov. J. Nucl. phys. 3, 676-680 (1966)
[96] Procesi, C.: A formal inverse to the Cayley -- Hamilton theorem, J. algebra 107, 63-74 (1987) · Zbl 0618.16014 · doi:10.1016/0021-8693(87)90073-1
[97] Pyatov, P.; Saponov, P.: Characteristic relations for quantum matrices, J. phys. A 28, 4415-4421 (1995) · Zbl 0864.17027 · doi:10.1088/0305-4470/28/15/020
[98] Reshetikhin, N. Yu.; Takhtadzhyan, L. A.; Faddeev, L. D.: Quantization of Lie groups and Lie algebras, Leningr. math. J. 1, 193-225 (1990) · Zbl 0715.17015
[99] Rodriguez-Romo, S.; Taft, E.: Some quantum-like Hopf algebras which remain noncommutative when q=1, Lett. math. Phys. 61, 41-50 (2002) · Zbl 1045.16020 · doi:10.1023/A:1020221319846
[100] Rodriguez-Romo, S.; Taft, E.: A left quantum group, J. algebra 286, 154-160 (2005) · Zbl 1073.16033 · doi:10.1016/j.jalgebra.2005.01.002
[101] Rozhkovskaya, N.: Braided central elements
[102] V. Rubtsov, A. Silantiev, D. Talalaev, Manin matrices, elliptic commuting families and characteristic polynomial of quantum gln elliptic Gaudin model, in press · Zbl 1190.37079 · emis:journals/SIGMA/2009/110/index.html
[103] Scott, J. S.: Quasi-commuting families of quantum minors, J. algebra 290, 204-220 (2005) · Zbl 1079.14058 · doi:10.1016/j.jalgebra.2001.12.001
[104] Sergeev, S.: Quantum matrices of the coefficients of a discrete linear problem, Zap. nauchn. Sem. S.-peterburg. Otdel. mat. Inst. Steklov (POMI) 269, 292-307 (2000)
[105] Sklyanin, E. K.: Bäcklund transformations and Baxter’s Q-operator, CRM proc. Lecture notes 26, 227-250 (2000) · Zbl 0969.37030
[106] Skoda, Z.: Included-row exchange principle for quantum minors
[107] Szigeti, J.: New determinants and the Cayley -- Hamilton theorem for matrices over Lie nilpotent rings, Proc. amer. Math. soc. 125, 2245-2254 (1997) · Zbl 0888.16011 · doi:10.1090/S0002-9939-97-03868-9
[108] Szigeti, J.: Cayley -- Hamilton theorem for matrices over an arbitrary ring, Serdica math. J. 32, 269-276 (2006) · Zbl 1164.16321
[109] Takasaki, K.: Integrable systems whose spectral curve is the graph of a function, CRM proc. Lecture notes 37, 211-222 (2004) · Zbl 1070.37042
[110] Talalaev, D.: Quantization of the Gaudin system, Funct. anal. Appl. 40, 86-91 (2006) · Zbl 1111.82015
[111] Turnbull, H. W.: Symmetric determinants and the Cayley and capelli operators, Proc. edinb. Math. soc. (2) 8, 76-86 (1948) · Zbl 0036.15002 · doi:10.1017/S0013091500024822
[112] Umeda, T.: Newton’s formula for $gl(n)$, Proc. amer. Math. soc. 126, 3169-3176 (1998) · Zbl 0913.17006 · doi:10.1090/S0002-9939-98-04557-2
[113] Umeda, T.: Application of Koszul complex to wronski relations for $U(gln)$, Comment. math. Helv. 78, No. 4, 663-680 (2003) · Zbl 1058.17007 · doi:10.1007/s00014-003-0784-7
[114] Urrutia, L.; Morales, N.: The Cayley -- Hamilton theorem for supermatrices, J. phys. A 27, 1981-1997 (1994) · Zbl 0834.15026 · doi:10.1088/0305-4470/27/6/022
[115] Wang, S.: Quantum symmetry groups of finite spaces, Comm. math. Phys. 195, 195-211 (1998) · Zbl 1013.17008 · doi:10.1007/s002200050385
[116] Wilkinson, J. H.: The algebraic eigenvalue problem, (1988) · Zbl 0626.65029
[117] Zeilberger, D.: Reverend charles to the aid of major percy and fields-medalist enrico, Amer. math. Monthly 103, 501-502 (1996) · Zbl 0856.15007 · doi:10.2307/2974719
[118] Zhang, J. J.: The quantum Cayley -- Hamilton theorem, J. pure appl. Algebra 129, 101-109 (1998) · Zbl 1107.17301 · doi:10.1016/S0022-4049(97)00039-X