Sur un théorème de J. L. Krivine concernant la caractérisation des classes d’espaces isomorphes à des espaces d’Orlicz généralises et des classes voisines. Proc. internat. Sympos. partial diff. Equ. Geometry normed lin. Spaces II. (French) Zbl 0262.46033


46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
26A51 Convexity of real functions in one variable, generalizations
Full Text: DOI


[1] Bretagnolle, J.; Dacunha-Castelle; Krivine, J. L., Lois stables et espaces L^p, Ann. Inst. H. Poincaré, 2, 231-263 (1966) · Zbl 0139.33501
[2] D. Dacunha-Castelle, Séminaire Goulaouic-Schwartz IX, X, 1972.
[3] D. Dacunha-Castelle and J. L. Krivine,Applications des ultraproduits à l’étude des espaces et algèbres de Banach, Studia Math. (1971), 315-334. · Zbl 0275.46023
[4] S. Kwapien,Opérateurs factorisables à travers des L^p (a paraître).
[5] G. Köthe,Topological Vector Spaces I, Springer Verlag, 1970. · Zbl 0179.17001
[6] J. L. Krivine,Sommes continues de ϕ-espaces (à paraître).
[7] Lindenstrauss, J.; Pelcynski, A., Absolutely summing operators in ℒ^p-spaces and their applications, Studia Math., 29, 275-326 (1968) · Zbl 0183.40501
[8] Lindenstrauss, J.; Tzafriri, L., Orlicz spaces of sequences I & II, Israel J. Math., 10, 379-390 (1971) · Zbl 0227.46042
[9] M. Schreiber, Ann. Inst. H. Poincaré8 (1972).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.