Algèbre des opérateurs aux différences finies. Proc. internat. Sympos. partial diff. Equ. Geometry normed lin. Spaces I. (French) Zbl 0252.46092


46L99 Selfadjoint operator algebras (\(C^*\)-algebras, von Neumann (\(W^*\)-) algebras, etc.)
46L05 General theory of \(C^*\)-algebras
47Gxx Integral, integro-differential, and pseudodifferential operators
Full Text: DOI


[1] L. S. Frank,Difference operators in convolutions, Dokl. Akad. Nauk SSSR8 (1968), No. 2. · Zbl 0177.19002
[2] L. S. Frank,Spaces of net functions, Mat. Sb (n. s.),86 (128) (1971) 2(10). · Zbl 0223.46037
[3] K. O. Friedrichs,Pseudo-differential operators, an introduction, Lecture Notes with the assistance of R. Valliancourt, Courant Institute of Mathematics and Science, New York University, 1968.
[4] L. Hörmander,Algebra of pseudodifferential operators, Comm. Pure Appl. Math.18 (1965).
[5] J. J. Kohn and L. Nirenberg,Algebra of pseudodifferential operators, Comm. Pure Appl. Math.18 (1965). · Zbl 0171.35101
[6] P. D. Lax and L. Nirenberg,On the stability for difference schemes: a sharp form of Gårding’s inequality, Comm. Pure Appl. Math.19 (1966), 437–492. · Zbl 0185.22801
[7] V. Thomée and B. Westergren,Elliptic difference equations and interior regularity, Numer. Math.11 (1968), 196–210. · Zbl 0159.38204
[8] R. Vaillancourt,A simple proof of Lax-Nirenberg theorems, Comm. Pure Appl. Math.23 (1970), 151–163. · Zbl 0188.41202
[9] M. Yamaguti and T. Nogi,An algebra of pseudo difference schemes and its application, Publ. Res. Inst. Math. Sci. Ser A.3 (1967), 151–166. · Zbl 0182.18601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.