Grinfeld, M.; Lord, G. J. Bifurcations in the regularized Ericksen bar model. (English) Zbl 1134.74018 J. Elasticity 90, No. 2, 161-173 (2008). Summary: We consider the regularized Ericksen model of an elastic bar on elastic foundation on an interval with Dirichlet boundary conditions as a two-parameter bifurcation problem. We explore, using local bifurcation analysis and continuation methods, the structure of bifurcations from double zero eigenvalues. Our results provide evidence in support of S. Müller’s conjecture [Calc. Var. Partial Diff. Equ. 1, No. 2, 169–204 (1993; Zbl 0821.49015)] concerning the symmetry of local minimizers of the associated energy functional and describe in detail the structure of primary branch connections that occur in this problem. We give a reformulation of Müller conjecture and suggest two further conjectures based on the local analysis and numerical observations. We conclude by analysing a “loop” structure that characterizes \((k,3k)\) bifurcations. Cited in 1 Document MSC: 74G60 Bifurcation and buckling 74K10 Rods (beams, columns, shafts, arches, rings, etc.) Keywords:Lyapunov-Schmidt analysis; continuation methods; Müller conjecture Citations:Zbl 0821.49015 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] Armbruster, D., Dangelmayr, G.: Coupled stationary bifurcations in no-flux boundary value problems. Math. Proc. Camb. Phil. Soc. 101, 167–192 (1987) · Zbl 0633.58011 · doi:10.1017/S0305004100066500 [2] Aston, P.: Scaling laws and bifurcations. In: Roberts, M. Stewart, I. (eds.) Singularity Theory and its Applications, Warwick 1989, Part II. Lecture Notes in Mathematics, vol. 1463, pp. 1–21. Springer-Verlag, Berlin (1991) [3] Ball, J.M.: Dynamics and minimizing sequences. In: Kirchgässner, K. (ed.) Problems Involving Change of Type. Lecture Notes in Physics, vol. 359, pp. 3–16. Springer-Verlag, Berlin (1990) [4] Ball, J.M., Holmes, P.J., James, R.D., Pego, R.L., Swart, P.J.: On the dynamics of fine structure. J. Nonlin. Science 1, 17–70 (1991) · Zbl 0791.35030 · doi:10.1007/BF01209147 [5] Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sanstede, B., Wang, X.: AUTO 97: Continuation and Bifurcation Software for ODEs, http://www.maths.surrey.ac.uk/personal/st/B.Sandstede/publications/auto97.pdf [6] Ericksen, J.: Equilibrium of bars. J. Elasticity 5, 191–202 (1975) · Zbl 0324.73067 · doi:10.1007/BF00126984 [7] Friesecke, G., McLeod, J.B.: Dynamics as a mechanism preventing the formation of finer and finer microstructure. Arch. Rat. Mech. Anal. 133, 199–247 (1996) · Zbl 0920.73345 · doi:10.1007/BF00380893 [8] Friesecke, G., McLeod, J.B.: Dynamic stability of non-minimizing phase mixtures. Proc. Royal Soc. London A 453, 2427–2436 (1997) · Zbl 1020.74002 · doi:10.1098/rspa.1997.0130 [9] Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory. Springer-Verlag, New York (1985) · Zbl 0607.35004 [10] Grinfeld, M., Novick-Cohen, A.: Counting stationary solutions of the Cahn–Hilliard equation by transversality arguments. Proc. Royal Soc. Edinburgh A 125, 351–370 (1995) · Zbl 0828.34007 [11] Grinfeld, M., Novick-Cohen, A.: The viscous Cahn-Hilliard equation: morse decomposition and structure of the global attractor. Trans. AMS 351, 2375–2406 (1999) · Zbl 0927.35045 · doi:10.1090/S0002-9947-99-02445-9 [12] Grinfeld, M., Novick-Cohen, A.: (in preparation) [13] Healey, T.J., Miller, U.: Two-phase equilibria in the anti-plane shear of an elastic solid with interfacial effect via global bifurcation. Proc. Royal Soc. A 463, 1117–1134 (2007) · Zbl 1132.74033 · doi:10.1098/rspa.2006.1807 [14] Hunt, G.W.: Hidden (a)symmetries of elastic and plastic bifurcation. Appl. Mech. Rev. 36, 1165–1186 (1986) · doi:10.1115/1.3149518 [15] Huo, Y., Müller, I.: Interfacial and inhomogeneity penalties in phase transitions. Continuum Mech. Thermodyn. 15, 395–407 (2001) · Zbl 1068.74590 · doi:10.1007/s00161-003-0124-6 [16] Kalies, W.D., Holmes, P.J.: On a dynamical model for phase transformation in nonlinear elasticity. Fields Inst. Commun. 5, 255–269 (1996) · Zbl 0876.73015 [17] Kamerich, E.: A Guide to Maple. Springer-Verlag, New York (1999) · Zbl 0926.68060 [18] Müller, S.: Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. 1, 169–204 (1993) · Zbl 0821.49015 · doi:10.1007/BF01191616 [19] Swart, P.J., Holmes, P.J.: Energy minimization and the formation of microstructure in dynamic anti-plane shear. Arch. Rat. Mech. Anal. 121, 37–85 (1992) · Zbl 0786.73066 · doi:10.1007/BF00375439 [20] Truskinovsky, L., Zanzotto, G.: Ericksen’s bar revisited: energy wiggles. J. Mech. Phys. Solids 44, 1371–1408 (1996) · doi:10.1016/0022-5096(96)00020-8 [21] Vainchtein, A.: Dynamics of phase transitions and hysteresis in a viscoelastic Ericksen’s bar on an elastic foundation. J. Elasticity 57, 243–280 (1999) · Zbl 1003.74054 · doi:10.1023/A:1007661727193 [22] Vainchtein, A.: Stick-slip interface motion as a singular limit of the viscosity-capillarity model. Math. Mech. Solids 6, 323–341 (2001) · Zbl 1057.74028 · doi:10.1177/108128650100600307 [23] Vainchtein, A., Healey, T.J., Rosakis, P.: Bifurcation and metastability in a new one-dimensional model for martensitic phase transition. Comput. Methods Appl. Mech. Engrg. 170, 407–421 (1999) · Zbl 0949.74049 · doi:10.1016/S0045-7825(98)00205-9 [24] Vainchtein, A., Healey, T., Rosakis, P., Truskinovsky, L.: The role of the spinodal region in one-dimensional martensitic phase transitions. Physica 115D, 29–48 (1998) · Zbl 0962.74530 [25] Vainchtein, A., Rosakis, P.: Hysteresis and stick-slip motion of phase boundaries in dynamic models of phase transitions. J. Nonlinear Sci. 9, 697–719 (1999) · Zbl 0989.74054 · doi:10.1007/s003329900083 [26] Yip, N.K.: Structure of stable solutions of a one-dimensional variational problem. Control, Optim. Calc. Variations 12, 721–751 (2006) · Zbl 1117.49025 · doi:10.1051/cocv:2006019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.