Lions, J. L. Remarks on some nonlinear evolution problems arising in Bingham flows. Proc. internat. Sympos. partial diff. Equ. Geometry normed lin. Spaces I. (English) Zbl 0252.35055 Isr. J. Math. 13, 155-172 (1972). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 3 Documents MSC: 35B45 A priori estimates in context of PDEs 35Q99 Partial differential equations of mathematical physics and other areas of application 35Q30 Navier-Stokes equations 76A05 Non-Newtonian fluids 76A10 Viscoelastic fluids × Cite Format Result Cite Review PDF Full Text: DOI References: [1] L. Amerio and G. Prouse,Abstract Almost Periodic Functions and Functional Analysis, Van Nostrand, 1971. · Zbl 0215.15701 [2] D. Begis, Third cycle Thesis, Paris, 1972. [3] Biroli, To appear. [4] Brézis, H., Inéquations variationnelles, J. Math. Pures Appl., 51, 1-168 (1972) · Zbl 0237.35001 [5] Brézis, H.; Stampacchia, G., Sur la régularité de la solution d’inéquations elliptiques, Bull. Soc. Math. France, 96, 153-180 (1968) · Zbl 0165.45601 [6] Duvaut, G.; Lions, J. L., Les Inéquations en Mécanique et en Physique (1972), Paris: Dunod, Paris · Zbl 0298.73001 [7] Duvaut, G.; Lions, J. L., Ecoulement d’un fluide rigide viscoplastique incompressible, C. R. Acad. Sci. Paris, 270, 58-61 (1970) · Zbl 0194.57604 [8] Duvaut, G.; Lions, J. L., Transfert de chaleur dans un fluide de Bingham dont la viscosité dépend de la température, J. Functional Analysis, 11, 93-110 (1972) · Zbl 0241.35035 · doi:10.1016/0022-1236(72)90081-X [9] Ebin, D. G.; Marsden, J. E., Groups of diffeomorphisms and the solution of the classical Euler equations for a perfect fluid, Bull. Amer. Math. Soc., 75, 962-967 (1969) · Zbl 0183.54502 · doi:10.1090/S0002-9904-1969-12315-3 [10] Foias, C.; Prodi, G., Sur le comportement global des solutions non stationnaires des équations de Navier Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, XXXIX, 1-34 (1967) · Zbl 0176.54103 [11] C. Foias and G. Prodi, To appear. [12] M. Fortin, Thèse, Paris, 1972. [13] Fujita, H.; Sauer, N., On existence of weak solutions of the Navier Stokes equations in regions with moving boundary, J. Fac. Sci. Univ. Tokyo Sect. I A, 17, 403-420 (1970) · Zbl 0206.39702 [14] Hopf, E., Über die Aufangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4, 213-231 (1951) · Zbl 0042.10604 [15] G. Iooss,Existence et stabilité de la solution périodique secondaire intervenant dans les problèmes d’évolution du type Navier Stokes, Arch. Rational Mech. Anal. (1972). · Zbl 0258.35057 [16] S. Kaniel,On the motion of a viscous incompressible flow. · Zbl 0195.10801 [17] Kato, T., Non-stationary flows of viscous and ideal fluids in ℝ^3, J. Functional Analysis, 9, 296-305 (1972) · Zbl 0229.76018 · doi:10.1016/0022-1236(72)90003-1 [18] Ladyzenskaya, O. A., Mathematical Theory of Incompressible Viscous Fluids (1963), New York: Gordon Breach, New York · Zbl 0121.42701 [19] Ladyzenskaya, O. A., Survey of the results and urgent problems connected with the Navier Stokes equations; On the hydrodynamic stability, Fluid Dyn. Transactions, 6, 275-291 (1971) [20] Ladyzenskaya, O. A., On new equations for viscous flows, Trudy Mat. Inst. Steklov, CII, 85-104 (1967) · Zbl 0202.37802 [21] Leray, J., Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appl., XII, 1-82 (1933) · Zbl 0006.16702 [22] Leray, J., Essai sur le mouvement plan d’un liquide visqueux que limitent des parois, J. Math. Pures Appl., XII, 331-418 (1934) · JFM 60.0727.01 [23] J. L. Lions,Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires, Dunod, Gauthier Villars, 1969. · Zbl 0189.40603 [24] J. L. Lions,Equations Différentielles Opérationnelles et Problèmes aux Limites, Springer 111, 1961. · Zbl 0098.31101 [25] J. L. Lions,Singular perturbations and some nonlinear aboundary value problems, M.R.C. Technical Report 421, 1963. [26] Lions, J. L., Sur certaines équations paraboliques non linéaires, Bull. Soc. Math. France, 93, 155-175 (1965) · Zbl 0132.10601 [27] Lions, J. L.; Prodi, G., Un théorème d’existence et unicité dans les équations de Navier Stokes en dimension 2, C. R. Acad. Sci. Paris, 248, 3519-3521 (1959) · Zbl 0091.42105 [28] B. Margolis,Ecoulement d’un fluide de Bingham dans un domaine non cylindrique, To appear. · Zbl 0262.76005 [29] B. Margolis,Ecoulement d’un fluide de Bingham avec une perturbation monotone, To appear. · Zbl 0262.76005 [30] Morimoto, H., On existence of periodic weak solutions of the Navier Stokes equations in regions with periodically moving boundaries, J. Fac. Sci. Univ. Tokyo IA, 18, 499-524 (1972) · Zbl 0258.35056 [31] D. Pop Cioranescu, To appear. [32] Sattinger, D., The mathematical problem of hydrodynamic stability, J. Math. Mech., 19, 797-817 (1970) · Zbl 0198.30401 [33] Serrin, J., On the interior regularity of weak solutions of the Navier Stokes equations, Arch. Rational Mech. Anal., 9, 187-195 (1962) · Zbl 0106.18302 · doi:10.1007/BF00253344 [34] E. Shamir, Counter example reported in Brézis-Stampacchia [5]. [35] Simonenko, I. V., Generalized method of means for abstract parabolic equations, Mat. Sb., 81, 123, 53-61 (1970) · Zbl 0188.21402 [36] Simonenko, I. V., Generalized method of means for problems of convection with fast oscillations and other parabolic equations, Mat. Sb., 87, 129, 236-253 (1972) [37] M. J. Strauss,Variations of Korn’s and Sobolev’s inequalities, Berkeley Symposium, Summer 1971. [38] Swann, H. S. G., The convergence with vanishing viscosity of nonstationary Navier Stokes flow to ideal flow in ℝ_3, Trans. Amer. Math. Soc., 157, 373-397 (1971) · Zbl 0218.76023 · doi:10.2307/1995853 [39] R. Temam, To appear. [40] V. I. Yudovich,Ecoulement non stationnaire d’un fluide idéal non visquex, J. Computational Math. Physics3 (1963). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.