Solving the biharmonic Dirichlet problem on domains with corners. (English) Zbl 1325.74090

Summary: The biharmonic Dirichlet boundary value problem on a bounded domain is the focus of the present paper. By Riesz’ representation theorem the existence and uniqueness of a weak solution is quite direct. The problem that we are interested in appears when one is looking for constructive approximations of a solution. Numerical methods using for example finite elements, prefer systems of second equations to fourth order problems. P. G. Ciarlet and P. A. Raviart [in: Proc. Symp. Math. Aspects Finite Elem. Partial Diff. Equations 33, 125–145 (1974; Zbl 0337.65058)] and P. Monk in [SIAM J. Numer. Anal. 24, 737–749 (1987; Zbl 0632.65112)] consider approaches through second order problems assuming that the domain is smooth. We discuss what happens when the domain has corners. Moreover, we suggest a setting, which is in some sense between Ciarlet-Raviart and Monk, that inherits the benefits of both settings and that give the weak solution through a system type approach.


74K20 Plates
35Q74 PDEs in connection with mechanics of deformable solids
35D30 Weak solutions to PDEs
Full Text: DOI


[1] M.Amara and F.Dabaghi, An optimal C^0‐finite element algorithm for the 2D biharmonic problem: theoretical analysis and numerical results, Numer. Math.90(1), 19-46 (2001). · Zbl 0997.65133
[2] I.Babuška, Stabilität des Definitionsgebietes mit Rücksicht auf grundlegende Probleme der Theorie der partiellen Differentialgleichungen auch im Zusammenhang mit der Elastizitätstheorie. I, II, (Russian) Czechoslovak Math. J.11(86), 76-105 (1961). 165-203. · Zbl 0126.11401
[3] I.Babuška, J. T.Odena, and J. K.Leeb, Mixed‐hybrid finite element approximations of second‐order elliptic boundary‐value problems, Comput. Method Appl. Mech. Eng.11(2), 175-206 (1977). · Zbl 0382.65056
[4] H.Blum and R.Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Methods Appl. Sci.2(4) (1980), 556-581. · Zbl 0445.35023
[5] F.Brezzi, On the existence, uniqueness and approximation of saddle‐point problems arising from Lagrangian multipliers, Rev. Française Automat. Recherche Opérationnelle Sér. Rouge8(R2), 129-151 (1974). · Zbl 0338.90047
[6] F.Brezzi and M.Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics Vol. 15 (Springer‐Verlag, New York, 1991). · Zbl 0788.73002
[7] P. G.Ciarlet and P.‐A.Raviart, A mixed finite element method for the biharmonic equation, in: Proceedings of a Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations conducted by the Mathematics Research Center, the University of Wisconsin‐Madison, 1974 (Academic Press, New York, 1974), pp. 125-145. · Zbl 0337.65058
[8] M.Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal.19(3), 613-626 (1988). · Zbl 0644.35037
[9] M.Dauge, Elliptic Boundary Value Problems on Corner Domains. Smoothness and Asymptotics of Solutions, Lecture Notes in Mathematics Vol. 1341, (Springer‐Verlag, Berlin, 1988). · Zbl 0668.35001
[10] M.Dauge, Stationary Stokes and Navier‐Stokes systems on two‐ or three‐dimensional domains with corners I, SIAM J. Math. Anal.20(1), 74-97 (1989). · Zbl 0681.35071
[11] T.Gerasimov, A.Stylianou, and G.Sweers, Corners give problems with decoupling fourth order equations into second order systems, SIAM J. Numer. Anal.50(3), 1604-1623 (2012). · Zbl 1260.35040
[12] P.Grisvard, Elliptic Problems in Non‐smooth Domains (Pitman, London, 1985). · Zbl 0695.35060
[13] P.Grisvard, Singularities in Boundary Value Problems (Masson‐Springer, 1992). · Zbl 0766.35001
[14] J.Kadlec, The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain, Czechoslovak Math. J.14(89), 386-393 (1964). · Zbl 0166.37703
[15] V. A.Kondrat’ev, Boundary problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc16, 227-313 (1967). · Zbl 0194.13405
[16] V. A.Kozlov, V. G.Maz’ya, and J.Rossmann, Elliptic boundary value problems in domains with point singularities, Mathematical Surveys and Monographs Vol. 52 (American Mathematical Society, Providence, RI, 1997). · Zbl 0947.35004
[17] O. A.Ladyzhenskaya, N. N.Uralt’seva, Linear and Quasilinear Elliptic Equations (Academic Press, 1968). · Zbl 0164.13002
[18] P.Lax, Functional Analysis (Wiley, New York, 2002). · Zbl 1009.47001
[19] R.Lozi, Résultats numériques de régularité du problème de Stokes et du laplacien itéré dans un polygone, RAIRO Anal. Numér.12(12), 267-282 (1978). · Zbl 0385.65025
[20] V. G.Maz’ya, S. A.Nazarov, and B. A.Plamenevskii, On the bending of a nearly polygonal plate with freely supported boundary, Sov. Math.27(8), 40-48 (1983). · Zbl 0581.73067
[21] P.Monk, A mixed finite element method for the biharmonic equation, SIAM J. Numer. Anal.24, 737-749 (1987). · Zbl 0632.65112
[22] S. A.Nazarov and G.Sweers, A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners, J. Differential Equations233(1), 151-180 (2007). · Zbl 1108.35043
[23] S.Nicaise, Polygonal Interface Problems, Methoden und Verfahren der Mathematischen Physik 39 (Verlag Peter D.Lang (ed.), Frankfurt‐am‐Main, 1993). · Zbl 0794.35040
[24] R.Scholz, A mixed method for 4th order problems using linear finite elements, RAIRO Anal. Numer.12(1), 85-90 (1978). · Zbl 0382.65059
[25] J. B.Seif, On the Green’s function for the biharmonic equation on an infinite wedge, Trans. Amer. Math. Soc.182, 241-260 (1973). · Zbl 0271.31005
[26] M. L.Williams, Stress singularities resulting from various boundary conditions in angular corners of plates in extension, J. Appl. Mech.19, 526-528 (1952).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.