Montgomery, Dean What is a topological group,. (English) Zbl 0063.04076 Am. Math. Mon. 52, 302-307 (1945). PDFBibTeX XMLCite \textit{D. Montgomery}, Am. Math. Mon. 52, 302--307 (1945; Zbl 0063.04076) Full Text: DOI
Arhangel’skii, A. V. The local properties in topological groups and related concepts and questions. (English) Zbl 1535.54020 Topology Appl. 340, Article ID 108717, 12 p. (2023). Reviewer: K. P. Hart (Delft) MSC: 54H11 22A05 54D20 54E35 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii}, Topology Appl. 340, Article ID 108717, 12 p. (2023; Zbl 1535.54020) Full Text: DOI
Arhangel’skii, A. V.; Reznichenko, E. A. Paratopological and semitopological groups versus topological groups. (English) Zbl 1077.54023 Topology Appl. 151, No. 1-3, 107-119 (2005). Reviewer: Kohzo Yamada (Shizuoka) MSC: 54H11 54H13 54H20 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii} and \textit{E. A. Reznichenko}, Topology Appl. 151, No. 1--3, 107--119 (2005; Zbl 1077.54023) Full Text: DOI
Lefschetz, S. A topological group of algebraic varieties. (English) JFM 48.0431.06 Bull. Am. Math. Soc. 28, 146 (1922). MSC: 57-XX PDFBibTeX XMLCite \textit{S. Lefschetz}, Bull. Am. Math. Soc. 28, 146 (1922; JFM 48.0431.06) Full Text: DOI
Steenrod, N. E. Milgram’s classifying space of a topological group. (English) Zbl 0177.51601 Topology 7, 349-368 (1968). PDFBibTeX XMLCite \textit{N. E. Steenrod}, Topology 7, 349--368 (1968; Zbl 0177.51601) Full Text: DOI
Arhangel’skii, A. V. A study of remainders of topological groups. (English) Zbl 1182.54043 Fundam. Math. 203, No. 2, 165-178 (2009). Reviewer: Kohzo Yamada (Shizuoka) MSC: 54H11 54D40 54A25 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii}, Fundam. Math. 203, No. 2, 165--178 (2009; Zbl 1182.54043) Full Text: DOI
Hernández, Julio C.; Hofmann, Karl H. A note on locally compact subsemigroups of compact groups. (English) Zbl 1507.22012 Semigroup Forum 103, No. 1, 291-294 (2021). Reviewer: Salvador Hernández (Castellón) MSC: 22A25 20M10 22C05 54B30 54H10 PDFBibTeX XMLCite \textit{J. C. Hernández} and \textit{K. H. Hofmann}, Semigroup Forum 103, No. 1, 291--294 (2021; Zbl 1507.22012) Full Text: DOI arXiv
Kechris, Alexander S.; Nies, André; Tent, Katrin The complexity of topological group isomorphism. (English) Zbl 1502.03016 J. Symb. Log. 83, No. 3, 1190-1203 (2018). MSC: 03E15 20B35 PDFBibTeX XMLCite \textit{A. S. Kechris} et al., J. Symb. Log. 83, No. 3, 1190--1203 (2018; Zbl 1502.03016) Full Text: DOI arXiv Link
Luna-Torres, Joaquin Grothendieck-topological Group Objects. arXiv:1909.11777 Preprint, arXiv:1909.11777 [math.CT] (2019). MSC: 06A06 06A11 18A35 18D35 BibTeX Cite \textit{J. Luna-Torres}, ``Grothendieck-topological Group Objects'', Preprint, arXiv:1909.11777 [math.CT] (2019) Full Text: arXiv OA License
Arhangel’skii, A. V.; van Mill, J. Topological groups with a \(bc\)-base. (English) Zbl 1316.22002 Topology Appl. 179, 5-12 (2015). Reviewer: T. M. G. Ahsanullah (Riyadh) MSC: 22A05 54H11 54F45 54D35 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii} and \textit{J. van Mill}, Topology Appl. 179, 5--12 (2015; Zbl 1316.22002) Full Text: DOI
Arkhangel’skij, A. V. Any topological group is a factor group of a zero-dimensional topological group. (English. Russian original) Zbl 0498.54032 Sov. Math., Dokl. 23, 615-618 (1981); translation from Dokl. Akad. Nauk SSSR 258, 1037-1040 (1981). MSC: 54F45 22A05 PDFBibTeX XMLCite \textit{A. V. Arkhangel'skij}, Sov. Math., Dokl. 23, 615--618 (1981; Zbl 0498.54032); translation from Dokl. Akad. Nauk SSSR 258, 1037--1040 (1981)
Choban, Mitrofan M. Some properties of topological groups related to compactness. (English) Zbl 1379.54028 Topology Appl. 221, 144-155 (2017). Reviewer: Shing So (Warrensburg) MSC: 54H11 54E18 54F65 22A30 54E15 54E35 PDFBibTeX XMLCite \textit{M. M. Choban}, Topology Appl. 221, 144--155 (2017; Zbl 1379.54028) Full Text: DOI
Arhangel’skii, Alexander; Tkachenko, Mikhail \(C\)-extensions of topological groups. (English) Zbl 1387.54021 Topology Appl. 235, 54-72 (2018). Reviewer: Dimitris Georgiou (Patras) MSC: 54H11 54A25 54C30 PDFBibTeX XMLCite \textit{A. Arhangel'skii} and \textit{M. Tkachenko}, Topology Appl. 235, 54--72 (2018; Zbl 1387.54021) Full Text: DOI
Montgomery, Deane; Zippin, Leo Topological group foundations of rigid space geometry. (English) Zbl 0024.06304 Trans. Am. Math. Soc. 48, 21-49 (1940). PDFBibTeX XMLCite \textit{D. Montgomery} and \textit{L. Zippin}, Trans. Am. Math. Soc. 48, 21--49 (1940; Zbl 0024.06304) Full Text: DOI
Ivankov, Petr R. Coverings of Quantum Groups. arXiv:1705.10645 Preprint, arXiv:1705.10645 [math.OA] (2017). BibTeX Cite \textit{P. R. Ivankov}, ``Coverings of Quantum Groups'', Preprint, arXiv:1705.10645 [math.OA] (2017) Full Text: arXiv OA License
de Groot, J.; Wille, R. J. Rigid continua and topological group-pictures. (English) Zbl 0084.38402 Arch. Math. 9, 441-446 (1958). PDFBibTeX XMLCite \textit{J. de Groot} and \textit{R. J. Wille}, Arch. Math. 9, 441--446 (1958; Zbl 0084.38402) Full Text: DOI
Montgomery, D.; Zippin, L. Topological group foundations of rigid space geometry. (English) JFM 66.0709.02 Trans. Amer. math. Soc. 48, 21-49 (1940). Reviewer: Reidemeister, K., [ZBL] PDFBibTeX XMLCite \textit{D. Montgomery} and \textit{L. Zippin}, Trans. Am. Math. Soc. 48, 21--49 (1940; JFM 66.0709.02) Full Text: DOI
Schreier, J.; Ulam, S. Sur le nombre des générateurs d’un groupe topologique compact et connexe. (French) Zbl 0011.01102 Fundam. Math. 24, 302-304 (1935). Reviewer: D. van Dantzig (Delft) MSC: 22C05 PDFBibTeX XMLCite \textit{J. Schreier} and \textit{S. Ulam}, Fundam. Math. 24, 302--304 (1935; Zbl 0011.01102) Full Text: DOI EuDML
Arhangel’skii, A. V. Two types of remainders of topological groups. (English) Zbl 1212.54086 Commentat. Math. Univ. Carol. 49, No. 1, 119-126 (2008). MSC: 54D40 54H11 54D20 54C25 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii}, Commentat. Math. Univ. Carol. 49, No. 1, 119--126 (2008; Zbl 1212.54086) Full Text: EuDML EMIS
Krein, M. On almost periodic functions on a topological group. (English) JFM 67.0409.01 C. R. Acad. Sci. URSS (2) 30, 5-8 (1941). Reviewer: Tautz, G., Prof. (Breslau) PDFBibTeX XMLCite \textit{M. Krein}, C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 30, 5--8 (1941; JFM 67.0409.01)
Krein, Mark On almost periodic functions on a topological group. (English) Zbl 0024.41503 C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 30, 5-8 (1941). PDFBibTeX XMLCite \textit{M. Krein}, C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 30, 5--8 (1941; Zbl 0024.41503)
Krein, M A ring of functions on a topological group. (English) JFM 66.0541.02 C. R. Acad. Sci. URSS (2) 29, 275-280 (1940). Reviewer: Tautz, G., Prof. (Breslau) PDFBibTeX XMLCite \textit{M Krein}, C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 29, 275--280 (1940; JFM 66.0541.02)
Krein, Mark A ring of functions on a topological group. (English) Zbl 0024.21103 C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 29, 275-280 (1940). PDFBibTeX XMLCite \textit{M. Krein}, C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 29, 275--280 (1940; Zbl 0024.21103)
Arhangel’skii, A. The Baire property in remainders of topological groups and other results. (English) Zbl 1212.54098 Commentat. Math. Univ. Carol. 50, No. 2, 273-279 (2009). Reviewer: Miroslav Hušek (Praha) MSC: 54H11 54D40 PDFBibTeX XMLCite \textit{A. Arhangel'skii}, Commentat. Math. Univ. Carol. 50, No. 2, 273--279 (2009; Zbl 1212.54098) Full Text: EuDML EMIS
Banakh, Taras; Guran, Igor; Ravsky, Alex Each topological group embeds into a duoseparable topological group. (English) Zbl 1511.22001 Topology Appl. 289, Article ID 107487, 11 p. (2021). MSC: 22A05 22A22 22B05 54D65 PDFBibTeX XMLCite \textit{T. Banakh} et al., Topology Appl. 289, Article ID 107487, 11 p. (2021; Zbl 1511.22001) Full Text: DOI arXiv
Bouziad, Ahmed Every Čech-analytic Baire semitopological group is a topological group. (English) Zbl 0857.22001 Proc. Am. Math. Soc. 124, No. 3, 953-959 (1996). Reviewer: D.Remus (Hagen) MSC: 22A05 54E18 54H15 22A20 57S25 PDFBibTeX XMLCite \textit{A. Bouziad}, Proc. Am. Math. Soc. 124, No. 3, 953--959 (1996; Zbl 0857.22001) Full Text: DOI
Michal, A. D. Functional analysis in topological group spaces. (English) Zbl 0029.30301 Math. Mag. 21, 80-90 (1947). PDFBibTeX XMLCite \textit{A. D. Michal}, Math. Mag. 21, 80--90 (1947; Zbl 0029.30301) Full Text: DOI
Paalman-de Miranda, A. B. The space of a topological group. (Dutch) Zbl 0235.22002 Math. Centrum, Amsterdam ZW 1963-006, 9 p. (1963). MSC: 22D05 54B15 PDFBibTeX XML
Nomizu, Katsumi; Goto, Morikuni On the group of a topological group. (English) Zbl 0041.15904 Tohoku Math. J., II. Ser. 2, 47-50 (1950). PDFBibTeX XMLCite \textit{K. Nomizu} and \textit{M. Goto}, Tôhoku Math. J. (2) 2, 47--50 (1950; Zbl 0041.15904) Full Text: DOI
Arhangel’skii, Alexander Vladimirovich Reminders of topological groups and of their subspaces. (English) Zbl 1164.54374 C. R. Acad. Bulg. Sci. 61, No. 1, 5-8 (2008). MSC: 54H11 54D60 54D40 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii}, C. R. Acad. Bulg. Sci. 61, No. 1, 5--8 (2008; Zbl 1164.54374)
Uspenskiĭ, V. V. A universal topological group with countable base. (English. Russian original) Zbl 0608.22003 Funct. Anal. Appl. 20, 160-161 (1986); translation from Funkts. Anal. Prilozh. 20, No. 2, 86-87 (1986). Reviewer: Bohumil František Šmarda (Brno) MSC: 22A05 46C05 PDFBibTeX XMLCite \textit{V. V. Uspenskiĭ}, Funct. Anal. Appl. 20, 160--161 (1986; Zbl 0608.22003); translation from Funkts. Anal. Prilozh. 20, No. 2, 86--87 (1986) Full Text: DOI
Yosida, K. A note on the differentiability of the topological group. (English) JFM 64.1094.04 Collect. Papers Fac. Sci. Osaka Univ., A 5, Nr. 42, 5 p (1938). Reviewer: Pietsch, H., Dr. (Berlin) PDFBibTeX XML
Yosida, K. A note on the differentiability of the topological group. (English) JFM 64.0363.02 Proc. physic.-math. Soc. Japan (3) 20, 6-10 (1938). Reviewer: Van Kampen, E. R., Prof. (Baltimore, Maryland, USA) PDFBibTeX XMLCite \textit{K. Yosida}, Proc. Phys.-Math. Soc. Japan, III. Ser. 20, 6--10 (1938; JFM 64.0363.02)
Yosida, Kosaku A note on the differentiability of the topological group. (English) Zbl 0018.39301 Proc. Phys.-Math. Soc. Japan, III. Ser. 20, 6-10 (1938). PDFBibTeX XMLCite \textit{K. Yosida}, Proc. Phys.-Math. Soc. Japan, III. Ser. 20, 6--10 (1938; Zbl 0018.39301)
Arhangel’skii, A. V.; van Mill, J. Nonnormality of Čech-Stone-remainders of topological groups. (English) Zbl 1420.54038 Topology Appl. 225, 27-33 (2017). MSC: 54D35 54D40 54A25 54H11 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii} and \textit{J. van Mill}, Topology Appl. 225, 27--33 (2017; Zbl 1420.54038) Full Text: DOI
Arhangel’skii, A. V.; van Mill, J. On topological groups with a first-countable remainder. III. (English) Zbl 1295.54034 Indag. Math., New Ser. 25, No. 1, 35-43 (2014). MSC: 54H11 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii} and \textit{J. van Mill}, Indag. Math., New Ser. 25, No. 1, 35--43 (2014; Zbl 1295.54034) Full Text: DOI
Sion, M. Outer measures with values in a topological group. (English) Zbl 0167.14503 Proc. Lond. Math. Soc., III. Ser. 19, 89-106 (1969). PDFBibTeX XMLCite \textit{M. Sion}, Proc. Lond. Math. Soc. (3) 19, 89--106 (1969; Zbl 0167.14503) Full Text: DOI
Angel, Omer; Kechris, Alexander S.; Lyons, Russell Random orderings and unique ergodicity of automorphism groups. (English) Zbl 1304.22027 J. Eur. Math. Soc. (JEMS) 16, No. 10, 2059-2095 (2014). Reviewer: Victor Sharapov (Dayton) MSC: 22F50 03C98 05C60 28D15 PDFBibTeX XMLCite \textit{O. Angel} et al., J. Eur. Math. Soc. (JEMS) 16, No. 10, 2059--2095 (2014; Zbl 1304.22027) Full Text: DOI arXiv
Klein, John R. The dualizing spectrum of a topological group. (English) Zbl 0982.55004 Math. Ann. 319, No. 3, 421-456 (2001). Reviewer: C.B.Thomas (Cambridge) MSC: 55P91 20J05 55N91 55P42 57P10 55P25 18G15 PDFBibTeX XMLCite \textit{J. R. Klein}, Math. Ann. 319, No. 3, 421--456 (2001; Zbl 0982.55004) Full Text: DOI
Morris, Sidney A. A remark on the separable quotient problem for topological groups. (English) Zbl 1427.22003 Bull. Aust. Math. Soc. 100, No. 3, 453-457 (2019). MSC: 22A05 46B26 PDFBibTeX XMLCite \textit{S. A. Morris}, Bull. Aust. Math. Soc. 100, No. 3, 453--457 (2019; Zbl 1427.22003) Full Text: DOI
Arhangel’skii, A. V.; van Mill, J. On topological groups with a first-countable remainder. (English) Zbl 1285.54027 Topol. Proc. 42, 157-163 (2013). Reviewer: Vladimir Tkachuk (México D. F.) MSC: 54H11 54A25 54B05 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii} and \textit{J. van Mill}, Topol. Proc. 42, 157--163 (2013; Zbl 1285.54027)
Gnanachandra, P.; Jafari, S.; Rajesh, N. \(\beta\)-ideal topological group. (English) Zbl 1508.54020 Casp. J. Math. Sci. 11, No. 2, 518-525 (2022). MSC: 54H11 PDFBibTeX XMLCite \textit{P. Gnanachandra} et al., Casp. J. Math. Sci. 11, No. 2, 518--525 (2022; Zbl 1508.54020) Full Text: DOI
Comfort, W. W.; Dikranjan, Dikran The density nucleus of a topological group. (English) Zbl 1285.22002 Topol. Proc. 44, 325-356 (2014). MSC: 22A05 22B05 54D25 54H11 54A35 54B30 54D30 54H13 PDFBibTeX XMLCite \textit{W. W. Comfort} and \textit{D. Dikranjan}, Topol. Proc. 44, 325--356 (2014; Zbl 1285.22002)
Sanchis, Manuel; Tkachenko, Mikhail Totally Lindelöf and totally \(\omega \)-narrow paratopological groups. (English) Zbl 1138.54029 Topology Appl. 155, No. 4, 322-334 (2008). Reviewer: Sergey Lüdkovsky (Moskva) MSC: 54H11 PDFBibTeX XMLCite \textit{M. Sanchis} and \textit{M. Tkachenko}, Topology Appl. 155, No. 4, 322--334 (2008; Zbl 1138.54029) Full Text: DOI
Mohammed Abed, M.; Farhan Al-Jumaili, A. M.; Ghazi Al-Sharqi, F. Some mathematical structures in a topological group. (English) Zbl 1479.54063 J. Algebra Appl. Math. 16, No. 2, 99-117 (2018). Reviewer: Yuri Movsisyan (Yerevan) MSC: 54H11 22A05 PDFBibTeX XMLCite \textit{M. Mohammed Abed} et al., J. Algebra Appl. Math. 16, No. 2, 99--117 (2018; Zbl 1479.54063)
Berhanu, Shiferaw; Comfort, W. W.; Reid, J. D. Counting subgroups and topological group topologies. (English) Zbl 0506.22001 Pac. J. Math. 116, 217-241 (1985). MSC: 22A05 54A10 20E15 20K45 54A25 PDFBibTeX XMLCite \textit{S. Berhanu} et al., Pac. J. Math. 116, 217--241 (1985; Zbl 0506.22001) Full Text: DOI
To-Ming Lau, Anthony; Ludwig, Jean Fourier-Stieltjes algebra of a topological group. (English) Zbl 1236.22001 Adv. Math. 229, No. 3, 2000-2023 (2012). Reviewer: Vladimir M. Manuilov (Moskva) MSC: 22A10 43A30 PDFBibTeX XMLCite \textit{A. To-Ming Lau} and \textit{J. Ludwig}, Adv. Math. 229, No. 3, 2000--2023 (2012; Zbl 1236.22001) Full Text: DOI
Arhangel’skii, A. V. On nowhere locally compact spaces with connected Stone-Čech remainder. (English) Zbl 1468.54008 Topol. Proc. 59, 55-66 (2022). Reviewer: Jack R. Porter (Lawrence) MSC: 54A25 54B05 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii}, Topol. Proc. 59, 55--66 (2022; Zbl 1468.54008) Full Text: Link
Sendov, Bl. Adaptive multiresolution analysis on the dyadic topological group. (English) Zbl 0976.42025 J. Approximation Theory 96, No. 2, 258-280 (1999). Reviewer: Khalifa Trimèche (Tunis) MSC: 42C40 43A32 42C10 PDFBibTeX XMLCite \textit{Bl. Sendov}, J. Approx. Theory 96, No. 2, 258--280 (1999; Zbl 0976.42025)
Loynes, R. M. Products of independent random elements in a topological group. (English) Zbl 0124.34401 Z. Wahrscheinlichkeitstheor. Verw. Geb. 1, 446-455 (1963). PDFBibTeX XMLCite \textit{R. M. Loynes}, Z. Wahrscheinlichkeitstheor. Verw. Geb. 1, 446--455 (1963; Zbl 0124.34401) Full Text: DOI
Gaughan, E. D. Topological group structure of infinite symmetric groups. (English) Zbl 0153.04301 Proc. Natl. Acad. Sci. USA 58, 907-910 (1967). PDFBibTeX XMLCite \textit{E. D. Gaughan}, Proc. Natl. Acad. Sci. USA 58, 907--910 (1967; Zbl 0153.04301) Full Text: DOI
Arhangel’skii, A. V. More on remainders close to metrizable spaces. (English) Zbl 1144.54001 Topology Appl. 154, No. 6, 1084-1088 (2007). Reviewer: Jan van Mill (Amsterdam) MSC: 54A25 54B05 54D40 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii}, Topology Appl. 154, No. 6, 1084--1088 (2007; Zbl 1144.54001) Full Text: DOI
Hajnal, András; Juhász, István A separable normal topological group need not be Lindelöf. (English) Zbl 0323.22001 General Topology Appl. 6, 199-205 (1976). MSC: 22A05 54A25 54G20 54D20 PDFBibTeX XMLCite \textit{A. Hajnal} and \textit{I. Juhász}, General Topology Appl. 6, 199--205 (1976; Zbl 0323.22001) Full Text: DOI
Arkhangel’skij, A. V. Some connections between properties of topological groups and their remainders. (English. Russian original) Zbl 0949.54054 Mosc. Univ. Math. Bull. 54, No. 3, 1-6 (1999); translation from Vestn. Mosk. Univ., Ser. I 1999, No. 3, 4-10 (1999). Reviewer: A. Ju. Obolenskij (Kyïv) MSC: 54H11 54D40 PDFBibTeX XMLCite \textit{A. V. Arkhangel'skij}, Mosc. Univ. Math. Bull. 54, No. 3, 4--10 (1999; Zbl 0949.54054); translation from Vestn. Mosk. Univ., Ser. I 1999, No. 3, 4--10 (1999)
Tkachenko, M. G. Souslin property in free topological groups on bicompacta. (English. Russian original) Zbl 0535.22002 Math. Notes 34, 790-793 (1983); translation from Mat. Zametki 34, No. 4, 601-607 (1983). Reviewer: I.V.Protasov MSC: 22A05 54F99 PDFBibTeX XMLCite \textit{M. G. Tkachenko}, Math. Notes 34, 790--793 (1983; Zbl 0535.22002); translation from Mat. Zametki 34, No. 4, 601--607 (1983) Full Text: DOI
Arhangel’skii, A. V.; van Mill, J. A theorem on remainders of topological groups. (English) Zbl 1362.54031 Topology Appl. 220, 189-192 (2017). Reviewer: Anna Giordano Bruno (Udine) MSC: 54H11 54D40 54A25 54B05 22A05 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii} and \textit{J. van Mill}, Topology Appl. 220, 189--192 (2017; Zbl 1362.54031) Full Text: DOI
Sendov, Bl. Adaptive approximation and compression. (English) Zbl 0936.41012 Chui, Charles K. (ed.) et al., Approximation theory IX. Volume 1. Theoretical aspects. Proceedings of the 9th international conference, Nashville, TN, USA, January 3-6, 1998. Nashville, TN: Vanderbilt University Press. Innovations in Applied Mathematics. 295-302 (1998). Reviewer: Elena E.Berdysheva (Erlangen) MSC: 41A30 42C40 68U10 PDFBibTeX XMLCite \textit{Bl. Sendov}, in: Approximation theory IX. Volume 1. Theoretical aspects. Proceedings of the 9th international conference, Nashville, TN, USA, January 3--6, 1998. Nashville, TN: Vanderbilt University Press. 295--302 (1998; Zbl 0936.41012)
Juhász, István; van Mill, Jan; Soukup, Lajos; Szentmiklóssy, Zoltán Connected and/or topological group pd-examples. (English) Zbl 1485.54007 Topology Appl. 283, Article ID 107347, 13 p. (2020). MSC: 54A25 03E35 54D05 54H11 22A05 PDFBibTeX XMLCite \textit{I. Juhász} et al., Topology Appl. 283, Article ID 107347, 13 p. (2020; Zbl 1485.54007) Full Text: DOI arXiv
Comfort, W. W.; van Mill, Jan On the supremum of the pseudocompact group topologies. (English) Zbl 1156.22001 Topology Appl. 155, No. 4, 213-224 (2008). Reviewer: Brigitte Breckner (Cluj-Napoca) MSC: 22A05 54A25 PDFBibTeX XMLCite \textit{W. W. Comfort} and \textit{J. van Mill}, Topology Appl. 155, No. 4, 213--224 (2008; Zbl 1156.22001) Full Text: DOI
Macbeath, A. M. On the measure of product sets in a topological group. (English) Zbl 0116.26302 J. Lond. Math. Soc. 35, 403-407 (1960). PDFBibTeX XMLCite \textit{A. M. Macbeath}, J. Lond. Math. Soc. 35, 403--407 (1960; Zbl 0116.26302) Full Text: DOI
Arhangel’skii, A. Moscow spaces, Pestov-Tkačenko Problem, and \(C\)-embeddings. (English) Zbl 1038.54013 Commentat. Math. Univ. Carol. 41, No. 3, 585-595 (2000). Reviewer: Petr Holický (Praha) MSC: 54H11 54E15 54C35 54C45 54G20 22A05 PDFBibTeX XMLCite \textit{A. Arhangel'skii}, Commentat. Math. Univ. Carol. 41, No. 3, 585--595 (2000; Zbl 1038.54013) Full Text: EuDML
Uspenskij, Vladimir V. Unitary representability of free abelian topological groups. (English) Zbl 1181.22010 Appl. Gen. Topol. 9, No. 2, 197-204 (2008). Reviewer: Shou Lin (Fujian) MSC: 22A25 43A35 43A65 46B99 54C65 54E35 54H11 PDFBibTeX XMLCite \textit{V. V. Uspenskij}, Appl. Gen. Topol. 9, No. 2, 197--204 (2008; Zbl 1181.22010) Full Text: DOI arXiv OA License
Harada, Shigeharu Remarks on the topological group of measure preserving transformation. (English) Zbl 0044.12503 Proc. Japan Acad. 27, 523-526 (1951). PDFBibTeX XMLCite \textit{S. Harada}, Proc. Japan Acad. 27, 523--526 (1951; Zbl 0044.12503) Full Text: DOI
Uspenskij, V. V. On the group of isometries of the Urysohn universal metric space. (English) Zbl 0699.54011 Commentat. Math. Univ. Carol. 31, No. 1, 181-182 (1990). MSC: 54E40 22A05 54H15 PDFBibTeX XMLCite \textit{V. V. Uspenskij}, Commentat. Math. Univ. Carol. 31, No. 1, 181--182 (1990; Zbl 0699.54011) Full Text: EuDML
Arhangel’skij, A. V. On countably compact topologies on compact groups and on dyadic compacta. (English) Zbl 0804.54001 Topology Appl. 57, No. 2-3, 163-181 (1994). Reviewer: B.F.Šmarda (Brno) MSC: 54A05 20K45 22C05 PDFBibTeX XMLCite \textit{A. V. Arhangel'skij}, Topology Appl. 57, No. 2--3, 163--181 (1994; Zbl 0804.54001) Full Text: DOI
Uspenskij, Vladimir On universal minimal compact \(G\)-spaces. (English) Zbl 0996.22003 Topol. Proc. 25(Spring), 301-308 (2000). Reviewer: Oleg V.Gutik (Lviv) MSC: 22A05 22F05 54D30 54H15 57S05 57S25 22A15 PDFBibTeX XMLCite \textit{V. Uspenskij}, Topol. Proc. 25(Spring), 301--308 (2000; Zbl 0996.22003) Full Text: arXiv
Arhangel’skii, A. V.; Choban, M. M. Rajkov remainder and other group-remainders of a topological group. (English) Zbl 1401.54018 Topology Appl. 241, 82-88 (2018). Reviewer: Vladimir Tkachuk (México D. F.) MSC: 54H11 54A25 54B05 54D40 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii} and \textit{M. M. Choban}, Topology Appl. 241, 82--88 (2018; Zbl 1401.54018) Full Text: DOI
Arhangel’skii, Alexander V.; Choban, Mitrofan M.; Kenderov, Petar S. Topological games and topologies on group. (English) Zbl 1349.54073 Math. Maced. 8, 1-19 (2010). MSC: 54H11 54H20 54H15 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii} et al., Math. Maced. 8, 1--19 (2010; Zbl 1349.54073) Full Text: Link
Banakh, Taras Categorically closed topological groups. (English) Zbl 1422.22008 Axioms 6, No. 3, Paper No. 23, 33 p. (2017). MSC: 22A26 22A15 PDFBibTeX XMLCite \textit{T. Banakh}, Axioms 6, No. 3, Paper No. 23, 33 p. (2017; Zbl 1422.22008) Full Text: DOI arXiv OA License
Comfort, W. W.; Galindo, Jorge Pseudocompact topological group refinements of maximal weight. (English) Zbl 1012.22002 Proc. Am. Math. Soc. 131, No. 4, 1311-1320 (2003). Reviewer: Salvador Hernández (Castellon) MSC: 22A05 54H11 PDFBibTeX XMLCite \textit{W. W. Comfort} and \textit{J. Galindo}, Proc. Am. Math. Soc. 131, No. 4, 1311--1320 (2003; Zbl 1012.22002) Full Text: DOI
Fay, Temple H.; Ordman, Edward T.; Smith Thomas, Barbara V. The free topological group over the rationals. (English) Zbl 0403.22003 General Topology Appl. 10, 33-47 (1979). MSC: 22A05 54D50 22A99 54G20 20E05 PDFBibTeX XMLCite \textit{T. H. Fay} et al., General Topology Appl. 10, 33--47 (1979; Zbl 0403.22003) Full Text: DOI
Tkachenko, Michael G. Factorization theorems for topological groups and their applications. (English) Zbl 0722.54039 Topology Appl. 38, No. 1, 21-37 (1991). Reviewer: L.Stoyanov (Sofia) MSC: 54H11 22A05 54C05 54A25 54D30 PDFBibTeX XMLCite \textit{M. G. Tkachenko}, Topology Appl. 38, No. 1, 21--37 (1991; Zbl 0722.54039) Full Text: DOI
Segal, G. B. Classifying space of a topological group in the Gel’fand-Fuks sense. (English. Russian original) Zbl 0317.55017 Funct. Anal. Appl. 9, 131-133 (1975); translation from Funkts. Anal. Prilozh. 9, No. 2, 48-50 (1975). MSC: 55R35 57T99 PDFBibTeX XMLCite \textit{G. B. Segal}, Funct. Anal. Appl. 9, 131--133 (1975; Zbl 0317.55017); translation from Funkts. Anal. Prilozh. 9, No. 2, 48--50 (1975) Full Text: DOI
Kenderov, Petar S.; Kortezov, Ivaylo S.; Moors, Warren B. Topological games and topological groups. (English) Zbl 0976.22003 Topology Appl. 109, No. 2, 157-165 (2001). Reviewer: J.D.Lawson (Baton Rouge) MSC: 22A20 54E18 57S25 54H15 PDFBibTeX XMLCite \textit{P. S. Kenderov} et al., Topology Appl. 109, No. 2, 157--165 (2001; Zbl 0976.22003) Full Text: DOI
van Mill, Jan A topological group having no homeomorphisms other than translations. (English) Zbl 0573.22001 Trans. Am. Math. Soc. 280, 491-498 (1983). Reviewer: Jan van Mill MSC: 22A05 54G20 57S99 58B25 PDFBibTeX XMLCite \textit{J. van Mill}, Trans. Am. Math. Soc. 280, 491--498 (1983; Zbl 0573.22001) Full Text: DOI
Urbanik, Kazimierz On the limiting probability distribution on a compact topological group. (English) Zbl 0203.49902 Fundam. Math. 44, 253-261 (1957). PDFBibTeX XMLCite \textit{K. Urbanik}, Fundam. Math. 44, 253--261 (1957; Zbl 0203.49902) Full Text: DOI EuDML
Alas, O. T.; Sanchis, M. Countably compact paratopological groups. (English) Zbl 1125.22001 Semigroup Forum 74, No. 3, 423-438 (2007). Reviewer: Kohzo Yamada (Shizuoka) MSC: 22A15 54H11 22A05 PDFBibTeX XMLCite \textit{O. T. Alas} and \textit{M. Sanchis}, Semigroup Forum 74, No. 3, 423--438 (2007; Zbl 1125.22001) Full Text: DOI
Arhangel’skii, Alexander V.; Choban, Mitrofan M. Completeness type properties of semitopological groups, and the theorems of Montgomery and Ellis. (English) Zbl 1213.54051 Topol. Proc. 37, 33-60 (2011). Reviewer: Salvador Hernández (Castellon) MSC: 54H11 54H20 54H15 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii} and \textit{M. M. Choban}, Topol. Proc. 37, 33--60 (2011; Zbl 1213.54051)
Banakh, Taras A quantitative generalization of Prodanov-Stoyanov theorem on minimal abelian topological groups. (English) Zbl 1435.22002 Topology Appl. 271, Article ID 106983, 17 p. (2020). Reviewer: Lydia Außenhofer (Passau) MSC: 22A05 22A15 54D30 54E15 PDFBibTeX XMLCite \textit{T. Banakh}, Topology Appl. 271, Article ID 106983, 17 p. (2020; Zbl 1435.22002) Full Text: DOI arXiv
Kawada, Yukiyosi On the group ring of a topological group. (English) Zbl 0041.36303 Math. Jap. 1, 1-5 (1948). PDFBibTeX XMLCite \textit{Y. Kawada}, Math. Japon. 1, 1--5 (1948; Zbl 0041.36303)
Jha, Niwas; Jha, B. N. Non-standard topological algebra. (English) Zbl 0586.22001 J. Bihar Math. Soc. 9, 54-57 (1985). Reviewer: K.Iseki MSC: 22A05 54J05 PDFBibTeX XMLCite \textit{N. Jha} and \textit{B. N. Jha}, J. Bihar Math. Soc. 9, 54--57 (1985; Zbl 0586.22001)
Arhangel’skii, Alexander; Tkachenko, Mikhail Topological groups and related structures. (English) Zbl 1323.22001 Atlantis Studies in Mathematics 1. Hackensack, NJ: World Scientific; Paris: Atlantis Press (ISBN 978-90-78677-06-2/hbk). xiv, 781 p. (2008). Reviewer: Salvador Hernández (Castellon) MSC: 22-02 54-02 22A05 PDFBibTeX XMLCite \textit{A. Arhangel'skii} and \textit{M. Tkachenko}, Topological groups and related structures. Hackensack, NJ: World Scientific; Paris: Atlantis Press (2008; Zbl 1323.22001) Backlinks: MO
Gao, Yunpeng Bi-topological group. (Chinese) Zbl 0578.22004 J. Math. Res. Expo. 4, No. 4, 95-96 (1984). Reviewer: Ta Sun Wu (Cleveland Heights) MSC: 22A05 PDFBibTeX XMLCite \textit{Y. Gao}, J. Math. Res. Expo. 4, No. 4, 95--96 (1984; Zbl 0578.22004)
Comfort, W. W.; Remus, Dieter Long chains of topological group topologies. — A continuation. (English) Zbl 0873.22001 Topology Appl. 75, No. 1, 51-79 (1997). Reviewer: John W.Baker (Sheffield) MSC: 22A05 54H11 22E46 PDFBibTeX XMLCite \textit{W. W. Comfort} and \textit{D. Remus}, Topology Appl. 75, No. 1, 51--79 (1997; Zbl 0873.22001) Full Text: DOI
Edelstein, M. On some notions of contiguity between subsets of a topological group. (English) Zbl 0116.02202 Rend. Mat. Appl., V. Ser. 22, 266-272 (1963). PDFBibTeX XMLCite \textit{M. Edelstein}, Rend. Mat. Appl., V. Ser. 22, 266--272 (1963; Zbl 0116.02202)
Arhangel’skii, Alexander; van Mill, Jan On uniquely homogeneous spaces, I. (English) Zbl 1257.54020 J. Math. Soc. Japan 64, No. 3, 903-926 (2012). Reviewer: Kohzo Yamada (Shizuoka) MSC: 54C05 54H11 54H15 54H05 54G20 PDFBibTeX XMLCite \textit{A. Arhangel'skii} and \textit{J. van Mill}, J. Math. Soc. Japan 64, No. 3, 903--926 (2012; Zbl 1257.54020) Full Text: DOI Euclid
Arhangel’skii, A. V.; van Mill, J. Dense topological groups in Parovičenko spaces. (English) Zbl 1486.54039 Topol. Proc. 59, 279-288 (2022). Reviewer: K. P. Hart (Delft) MSC: 54D35 54G05 54G10 22A05 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii} and \textit{J. van Mill}, Topol. Proc. 59, 279--288 (2022; Zbl 1486.54039) Full Text: Link
Arhangel’skii, A. V. First countability, tightness, and other cardinal invariants in remainders of topological groups. (English) Zbl 1130.54011 Topology Appl. 154, No. 16, 2950-2961 (2007). Reviewer: Xabier Domínguez (La Coruña) MSC: 54D40 54A25 54H11 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii}, Topology Appl. 154, No. 16, 2950--2961 (2007; Zbl 1130.54011) Full Text: DOI
Shtern, Alexander I. Commutativity conditions for DMAP solvable topological groups. (English) Zbl 1270.22002 Proc. Jangjeon Math. Soc. 15, No. 2, 109-113 (2012). Reviewer: Sobhakar Ganguly (Kolkata) MSC: 22D12 22E15 22D99 PDFBibTeX XMLCite \textit{A. I. Shtern}, Proc. Jangjeon Math. Soc. 15, No. 2, 109--113 (2012; Zbl 1270.22002)
Hofmann, Karl H.; Morris, Sidney A. Compact homeomorphism groups are profinite. (English) Zbl 1247.22007 Topology Appl. 159, No. 9, 2453-2462 (2012). Reviewer: Oleg Styrt (Moscow) MSC: 22C05 22F50 54H15 57S10 PDFBibTeX XMLCite \textit{K. H. Hofmann} and \textit{S. A. Morris}, Topology Appl. 159, No. 9, 2453--2462 (2012; Zbl 1247.22007) Full Text: DOI
Alperin, R. C.; Sahleh, H. Hopf’s formula and the Schur multiplicator for topological groups. (English) Zbl 0760.22001 Kyungpook Math. J. 31, No. 1, 35-71 (1991). Reviewer: B.L.Madison (Fayetteville) MSC: 22A05 20K35 PDFBibTeX XMLCite \textit{R. C. Alperin} and \textit{H. Sahleh}, Kyungpook Math. J. 31, No. 1, 35--71 (1991; Zbl 0760.22001)
Sendov, Bl. Multiresolution analysis of functions defined on the dyadic topological group. (English) Zbl 0894.42011 East J. Approx. 3, No. 2, 225-239 (1997). Reviewer: T.Boyanov (Sofia) MSC: 42C15 20F38 68U10 22A10 PDFBibTeX XMLCite \textit{Bl. Sendov}, East J. Approx. 3, No. 2, 225--239 (1997; Zbl 0894.42011)
Uspenskij, V. V. Topological groups and Dugundji compacta. (Russian) Zbl 0684.22001 Mat. Sb. 180, No. 8, 1092-1118 (1989). Reviewer: M.G.Tkachenko MSC: 22A05 54D30 54C55 PDFBibTeX XMLCite \textit{V. V. Uspenskij}, Mat. Sb. 180, No. 8, 1092--1118 (1989; Zbl 0684.22001) Full Text: EuDML
Diaconis, Persi; Shahshahani, Mehrdad On square roots of the uniform distribution on compact groups. (English) Zbl 0622.60015 Proc. Am. Math. Soc. 98, 341-348 (1986). Reviewer: Y.Asoo MSC: 60B15 22C05 43A05 PDFBibTeX XMLCite \textit{P. Diaconis} and \textit{M. Shahshahani}, Proc. Am. Math. Soc. 98, 341--348 (1986; Zbl 0622.60015) Full Text: DOI
Arhangel’skii, A. V. Topological groups and \(C\)-embeddings. (English) Zbl 0984.54018 Topology Appl. 115, No. 3, 265-289 (2001). Reviewer: Haruto Ohta (Ohya / Shizuoka) MSC: 54C45 22A99 54D50 54C35 54D60 PDFBibTeX XMLCite \textit{A. V. Arhangel'skii}, Topology Appl. 115, No. 3, 265--289 (2001; Zbl 0984.54018) Full Text: DOI
Protasov, I. V. Maximal topologies on groups. (English. Russian original) Zbl 0935.22002 Sib. Math. J. 39, No. 6, 1184-1194 (1998); translation from Sib. Mat. Zh. 39, No. 6, 1368-1381 (1998). Reviewer: K.N.Ponomarev (Novosibirsk) MSC: 22A05 54H11 PDFBibTeX XMLCite \textit{I. V. Protasov}, Sib. Math. J. 39, No. 6, 1368--1381 (1998; Zbl 0935.22002); translation from Sib. Mat. Zh. 39, No. 6, 1368--1381 (1998) Full Text: DOI
Comfort, W. W.; Remus, Dieter Compact groups of Ulam-measurable cardinality: Partial converses to theorems of Arhangel’skiĭ and Varopoulos. (English) Zbl 0817.22006 Math. Jap. 39, No. 2, 203-210 (1994). Reviewer: M.G.Tkachenko (Mexico) MSC: 22C05 03E55 54A35 54H11 54A10 PDFBibTeX XMLCite \textit{W. W. Comfort} and \textit{D. Remus}, Math. Japon. 39, No. 2, 203--210 (1994; Zbl 0817.22006)
Megrelishvili, Michael Every topological group is a group retract of a minimal group. (English) Zbl 1153.22002 Topology Appl. 155, No. 17-18, 2105-2127 (2008). Reviewer: W. Wistar Comfort (Middletown) MSC: 22A05 54H11 22A25 54H15 54H20 46B99 PDFBibTeX XMLCite \textit{M. Megrelishvili}, Topology Appl. 155, No. 17--18, 2105--2127 (2008; Zbl 1153.22002) Full Text: DOI arXiv
Protasov, Igor Box resolvability. (English) Zbl 1343.22001 Topology Appl. 209, 329-334 (2016). MSC: 22A05 PDFBibTeX XMLCite \textit{I. Protasov}, Topology Appl. 209, 329--334 (2016; Zbl 1343.22001) Full Text: DOI arXiv
Itô, Seizô Brownian motions in a topological group and in its covering group. (English) Zbl 0047.12601 Rend. Circ. Mat. Palermo, II. Ser. 1, 40-48 (1952). PDFBibTeX XMLCite \textit{S. Itô}, Rend. Circ. Mat. Palermo (2) 1, 40--48 (1952; Zbl 0047.12601) Full Text: DOI