×

An 8-dimensional family of simply connected Godeaux surfaces. (English) Zbl 1518.14052

Smooth, minimal projective surfaces of general type with the smallest numerical invariants, geometric genus \(p_g=0\), and self-intersection of the canonical divisor \(K^2=1\) are called numerical Godeaux surfaces.
By the works of Y. Miyaoka [Invent. Math. 34, 99–111 (1976; Zbl 0337.14010)], and M. Reid [J. Fac. Sci., Univ. Tokyo, Sect. I A 25, 75–92 (1978; Zbl 0399.14025)], we know that the possible torsion of a numerical Godeaux surface are the cyclic groups \(\mathbb{Z}/n\) for \(1\leq n \leq 5\).
For \(n=5,4,3\) in [M. Reid, J. Fac. Sci., Univ. Tokyo, Sect. I A 25, 75–92 (1978; Zbl 0399.14025); S. Coughlan and G. Urzúa, Int. Math. Res. Not. 2018, No. 18, 5609–5637 (2018; Zbl 1444.14071)] is proved that the torsion and the topological fundamental groups coincide. Recently, E. Dias and C. Rito computed equations for numerical Godeaux surfaces with torsion group \(\mathbb{Z}/2\). In all those cases, the moduli space is unirational and irreducible of dimension 8.
For numerical Godeaux surfaces with trivial torsion, it is still open to know if its fundamental topological group is also trivial.
In this paper, the authors found by algebraic-homological and computational methods an \(8\)-dimensional family of numerical Godeaux surfaces with trivial fundamental group.
As the authors remark, some outstanding questions remain open, for example: Do the torsion-free Godeaux surfaces form a single family?

MSC:

14J10 Families, moduli, classification: algebraic theory
14J29 Surfaces of general type
13D02 Syzygies, resolutions, complexes and commutative rings

Software:

Macaulay2
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Barlow, Rebecca, A simply connected surface of general type with \(p_g=0\), Invent. Math., 293-301 (1985) · Zbl 0561.14015 · doi:10.1007/BF01388974
[2] B\"{o}hning, Christian, Determinantal Barlow surfaces and phantom categories, J. Eur. Math. Soc. (JEMS), 1569-1592 (2015) · Zbl 1323.14014 · doi:10.4171/JEMS/539
[3] Bombieri, E., Canonical models of surfaces of general type, Inst. Hautes \'{E}tudes Sci. Publ. Math., 171-219 (1973) · Zbl 0259.14005
[4] Graf v. Bothmer, Hans-Christian, Scrollar syzygies of general canonical curves with genus \(\leq 8\), Trans. Amer. Math. Soc., 465-488 (2007) · Zbl 1117.13013 · doi:10.1090/S0002-9947-06-04353-4
[5] Buchsbaum, David A., Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension \(3\), Amer. J. Math., 447-485 (1977) · Zbl 0373.13006 · doi:10.2307/2373926
[6] Ciliberto, Ciro, The degree of the generators of the canonical ring of a surface of general type, Rend. Sem. Mat. Univ. Politec. Torino, 83-111 (1984) (1983) · Zbl 0558.14025
[7] Catanese, F., Babbage’s conjecture, contact of surfaces, symmetric determinantal varieties and applications, Invent. Math., 433-465 (1981) · Zbl 0472.14024 · doi:10.1007/BF01389064
[8] Catanese, Fabrizio, Complex analysis and algebraic geometry. On simply connected Godeaux surfaces, 117-153 (2000), de Gruyter, Berlin · Zbl 1054.14051
[9] E. Dias and C. Rito, \( \mathbb Z/2\)-Godeaux surfaces, 2009.12645, 2020.
[10] Goto, Shiro, On graded rings. I, J. Math. Soc. Japan, 179-213 (1978) · Zbl 0371.13017 · doi:10.2969/jmsj/03020179
[11] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/
[12] Lee, Yongnam, Bicanonical pencil of a determinantal Barlow surface, Trans. Amer. Math. Soc., 893-905 (2001) · Zbl 0967.14027 · doi:10.1090/S0002-9947-00-02609-X
[13] Miyaoka, Yoichi, Tricanonical maps of numerical Godeaux surfaces, Invent. Math., 99-111 (1976) · Zbl 0337.14010 · doi:10.1007/BF01425477
[14] M. Reid, The complete intersection of two or more quadrics. Thesis, University of Cambridge, 1972.
[15] Reid, Miles, Surfaces with \(p_g=0, K^2=1\), J. Fac. Sci. Univ. Tokyo Sect. IA Math., 75-92 (1978) · Zbl 0399.14025
[16] F.-O. Schreyer, An experimental approach to numerical Godeaux surfaces. Oberwolfach Report “Komplexe Algebraische Geometrie”, vol. 7, 2005, pp.434-436.
[17] F.-O. Schreyer and I. Stenger, Marked Godeaux surfaces with special bicanonical fibers. Available at 2201.12065.
[18] F.-O. Schreyer and I. Stenger, NumericalGodeaux, Macaulay2-package for the construction of numerical Godeaux surfaces, Version 1.1. Available at https://www.math.uni-sb.de/ag/lazic/stenger/M2/Macaulay2/NumericalGodeaux.m2.
[19] I. Stenger, A homological approach to numerical Godeaux surfaces. PhD thesis, 2018, Technische Universit\"at Kaiserslautern.
[20] Stenger, Isabel, A structure result for Gorenstein algebras of odd codimension, J. Algebra, 173-187 (2022) · Zbl 1480.13020 · doi:10.1016/j.jalgebra.2021.09.016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.