Mohamed, D. Sh.; Abdou, M. A.; Mahdy, A. M. S. Dynamical investigation and numerical modeling of a fractional mixed nonlinear partial integro-differential problem in time and space. (English) Zbl 07924380 J. Appl. Anal. Comput. 14, No. 6, 3458-3479 (2024). MSC: 65R20 45M10 35R09 × Cite Format Result Cite Review PDF Full Text: DOI
Farina, Leandro; Ferreira, Marcos R. S.; Péron, Victor The airfoil integral equation over disjoint intervals: analytic solutions and asymptotic expansions. (English) Zbl 07916003 Eur. J. Math. 10, No. 3, Paper No. 46, 37 p. (2024). MSC: 45E05 45B05 41A10 65R20 76B10 × Cite Format Result Cite Review PDF Full Text: DOI
Bello, Akanbi Kareem; Abubakar, Jos Usman; Oyedepo, Taiye; Ayinde, Abdullahi Muhammed; Mohammed, Tomiwa Faatihat Numerical approximation of multi-order fractional differential equation by Galerkin method with Chebyshev polynomial basis. (English) Zbl 07896717 J. Fract. Calc. Appl. 15, No. 2, Paper No. 3, 20 p. (2024). MSC: 49M27 45J05 26A33 × Cite Format Result Cite Review PDF Full Text: DOI
Pi, ZhiPeng; Lai, Xin Polynomial solution of Cauchy-type singular integro-differential equations with bivariate kernels. (English) Zbl 07890879 J. Comput. Appl. Math. 451, Article ID 116038, 11 p. (2024). MSC: 65Rxx 45Exx 45Jxx × Cite Format Result Cite Review PDF Full Text: DOI
Aourir, E.; Izem, N.; Laeli Dastjerdi, H. Numerical solution of third-kind Volterra integral equations with proportional delays based on moving least squares collocation method. (English) Zbl 07880535 Int. J. Comput. Math. 101, No. 4, 447-464 (2024). MSC: 45D05 45G10 65R20 × Cite Format Result Cite Review PDF Full Text: DOI
Dell’Accio, Francesco; Mezzanotte, Domenico; Nudo, Federico; Occorsio, Donatella Numerical approximation of Fredholm integral equation by the constrained mock-Chebyshev least squares operator. (English) Zbl 07876194 J. Comput. Appl. Math. 447, Article ID 115886, 13 p. (2024). Reviewer: Tuncer Acar (Selçuklu) MSC: 41A65 65R20 45B05 × Cite Format Result Cite Review PDF Full Text: DOI
Bruno, Oscar P.; Pandey, Ambuj Direct/iterative hybrid solver for scattering by inhomogeneous media. (English) Zbl 07837062 SIAM J. Sci. Comput. 46, No. 2, A1298-A1326 (2024). MSC: 74J20 45A05 65N35 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Heydari, M. H.; Razzaghi, M. A new wavelet method for fractional integro-differential equations with \(\psi\)-Caputo fractional derivative. (English) Zbl 1540.65553 Math. Comput. Simul. 217, 97-108 (2024). MSC: 65R20 35R11 45K05 65T60 × Cite Format Result Cite Review PDF Full Text: DOI
Neta, Beny Comparison of several numerical solvers for a discretized nonlinear diffusion model with source terms. (English) Zbl 1536.65085 Georgian Math. J. 31, No. 2, 331-338 (2024). Reviewer: Denys Dutykh (Le Bourget-du-Lac) MSC: 65M06 65N35 65N06 65N30 65D32 65H10 65T50 65F50 65M12 35R09 45K05 41A50 35K55 35A01 35A02 35Q60 × Cite Format Result Cite Review PDF Full Text: DOI
Wang, Tongke; Lian, Huan; Ji, Lu Singularity separation Chebyshev collocation method for weakly singular Volterra integral equations of the second kind. (English) Zbl 1535.65318 Numer. Algorithms 95, No. 4, 1829-1854 (2024). MSC: 65R20 45D05 × Cite Format Result Cite Review PDF Full Text: DOI
Lal, Shyam; Abhilasha Approximation of functions in Hölder class by third kind Chebyshev wavelet and its application in solution of Fredholm integro-differential equations. (English) Zbl 1531.65286 Rend. Circ. Mat. Palermo (2) 73, No. 1, 141-160 (2024). MSC: 65R20 45J05 45B05 65T60 × Cite Format Result Cite Review PDF Full Text: DOI
Yadav, Abhishek; Setia, Amit; Nair, M. Thamban Error analysis of a residual-based Galerkin’s method for a system of Cauchy singular integral equations with vanishing endpoint conditions. (English) Zbl 1522.65265 J. Comput. Appl. Math. 436, Article ID 115365, 14 p. (2024). MSC: 65R20 45E05 × Cite Format Result Cite Review PDF Full Text: DOI
Al-Bugami, Abeer M.; Abdou, Mohamed A.; Mahdy, Amr M. S. Sixth-kind Chebyshev and Bernoulli polynomial numerical methods for solving nonlinear mixed partial integrodifferential equations with continuous kernels. (English) Zbl 07904087 J. Funct. Spaces 2023, Article ID 6647649, 14 p. (2023). MSC: 65R20 45K05 45B05 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Oyedepo, Taiye; Ishola, Christie Yemisi; Ayoade, Abayomi Ayotunde; Ajileye, Ganiyu Collocation computational algorithm for Volterra-Fredholm integro-differential equations. (English) Zbl 07884010 Electron. J. Math. Anal. Appl. 11, No. 2, Paper No. 8, 9 p. (2023). MSC: 49M27 45J05 26A33 × Cite Format Result Cite Review PDF Full Text: DOI
Rezabeyk, Saeedeh; Abbasbandy, Saeid; Shivanian, Elyas; Derili, Hesam A new approach to solve weakly singular fractional-order delay integro-differential equations using operational matrices. (English) Zbl 07814801 J. Math. Model. 11, No. 2, 257-275 (2023). MSC: 65R20 45J05 34K37 × Cite Format Result Cite Review PDF Full Text: DOI
Salehi, Behnam; Nouri, Kazem; Torkzadeh, Leila An efficient numerical approach for solving nonlinear Volterra integral equations. (English) Zbl 1533.65258 Comput. Methods Differ. Equ. 11, No. 3, 615-629 (2023). MSC: 65R20 45D05 45G10 × Cite Format Result Cite Review PDF Full Text: DOI
Benzahi, Ahlem; Arar, Nouria; Abada, Nadjet; Rhaima, Mohamed; Mchiri, Lassaad; Makhlouf, Abdellatif Ben Numerical investigation of Fredholm fractional integro-differential equations by least squares method and compact combination of shifted Chebyshev polynomials. (English) Zbl 1529.65142 J. Nonlinear Math. Phys. 30, No. 4, 1392-1408 (2023). MSC: 65R20 26A33 45J05 45B05 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Saha Ray, Santanu; Gupta, Reema A novel numerical approach based on shifted second-kind Chebyshev polynomials for solving stochastic Itô-Volterra integral equation of Abel type with weakly singular kernel. (English) Zbl 1535.65315 Math. Methods Appl. Sci. 46, No. 13, 14026-14044 (2023). MSC: 65R20 65C30 60H35 45D05 × Cite Format Result Cite Review PDF Full Text: DOI
Arsalan Sajjadi, Sayed; Saberi Najafi, Hashem; Aminikhah, Hossein A numerical study on the non-smooth solutions of the nonlinear weakly singular fractional Volterra integro-differential equations. (English) Zbl 07781786 Math. Methods Appl. Sci. 46, No. 4, 4070-4084 (2023). MSC: 65R20 34A08 47G20 45Gxx × Cite Format Result Cite Review PDF Full Text: DOI
Victor, A. A.; Etuk, M. O.; Ishola, C. Y.; Oladapo, A. O.; Ajisope, M. O.; Raji, M. T. A projection computational technique for the solution Volterra-Fredholm integro-differential equations. (English) Zbl 1538.65217 Aligarh Bull. Math. 42, No. 1, 93-105 (2023). MSC: 65R20 45J05 45B05 45D05 33C45 × Cite Format Result Cite Review PDF Full Text: Link
Deniz, S.; Özger, F.; Ö. Özger, Z.; Mohiuddine, S. A.; Ersoy, M. T. Numerical solution of fractional Volterra integral equations based on rational Chebyshev approximation. (English) Zbl 07777196 Miskolc Math. Notes 24, No. 3, 1287-1305 (2023). MSC: 65R10 45D05 × Cite Format Result Cite Review PDF Full Text: DOI
Wang, Xu; Schiavone, Peter Dislocation-free zone at a mode II edge crack tip. (English) Zbl 1527.35415 J. Elasticity 154, No. 1-4, 397-406 (2023). MSC: 35Q74 45A05 45E05 45F15 74-10 74A45 74M25 74R20 × Cite Format Result Cite Review PDF Full Text: DOI
Ahmadinia, M.; Afshariarjmand, H.; Salehi, M. Numerical solution of Itô-Volterra integral equations by the QR factorization method. (English) Zbl 07746747 J. Appl. Math. Comput. 69, No. 4, 3171-3188 (2023). MSC: 65C30 60H20 45A05 × Cite Format Result Cite Review PDF Full Text: DOI
Wang, Zewen; Hu, Xiaoying; Hu, Bin A collocation method based on roots of Chebyshev polynomial for solving Volterra integral equations of the second kind. (English) Zbl 1525.65141 Appl. Math. Lett. 146, Article ID 108804, 8 p. (2023). MSC: 65R20 45D05 × Cite Format Result Cite Review PDF Full Text: DOI
Sajjadi, Sayed Arsalan; Najafi, Hashem Saberi; Aminikhah, Hossein An error estimation of a Nyström type method for integral-algebraic equations of index-1. (English) Zbl 1522.65262 Math. Sci., Springer 17, No. 3, 253-265 (2023). MSC: 65R20 45D05 45F15 × Cite Format Result Cite Review PDF Full Text: DOI
Wang, Tongke; Liu, Sijing; Zhang, Zhiyue Singular expansions and collocation methods for generalized Abel integral equations. (English) Zbl 1530.65188 J. Comput. Appl. Math. 429, Article ID 115240, 20 p. (2023). MSC: 65R20 45E10 × Cite Format Result Cite Review PDF Full Text: DOI
Singhal, Meenakshi; Mittal, Ekta Certain Chebyshev fractional type integral inequalities involving Saigo-Maeda operator. (English) Zbl 07731425 Southeast Asian Bull. Math. 47, No. 3, 425-437 (2023). MSC: 26D10 26A33 45P05 × Cite Format Result Cite Review PDF Full Text: Link
Heydari, M. H.; Razzaghi, M.; Cattani, C. Fractional Chebyshev cardinal wavelets: application for fractional quadratic integro-differential equations. (English) Zbl 1538.65615 Int. J. Comput. Math. 100, No. 3, 479-496 (2023). MSC: 65R20 45J05 34K37 65T60 × Cite Format Result Cite Review PDF Full Text: DOI
Ahmadinia, M.; Afshariarjmand, H.; Salehi, M. Numerical solution of multi-dimensional Itô Volterra integral equations by the second kind Chebyshev wavelets and parallel computing process. (English) Zbl 07701073 Appl. Math. Comput. 450, Article ID 127988, 10 p. (2023). MSC: 65C30 65R20 45D05 60H20 × Cite Format Result Cite Review PDF Full Text: DOI
Yadav, Abhishek; Setia, Amit; Agarwal, Ravi P. Error analysis of Chebyshev polynomial-based numerical method for system of hypersingular integral equations. (English) Zbl 1538.65629 Comput. Appl. Math. 42, No. 5, Paper No. 213, 24 p. (2023). MSC: 65R20 45E10 45F15 74R10 × Cite Format Result Cite Review PDF Full Text: DOI
Wang, Yuxuan; Wang, Tongke; Gao, Guang-hua Series solution and Chebyshev collocation method for the initial value problem of Emden-Fowler equation. (English) Zbl 1524.65262 Int. J. Comput. Math. 100, No. 2, 233-252 (2023). MSC: 65L05 41A58 45D05 65L60 65R20 × Cite Format Result Cite Review PDF Full Text: DOI
De Bonis, Maria Carmela; Mennouni, Abdelaziz; Occorsio, Donatella A numerical method for solving systems of hypersingular integro-differential equations. (English) Zbl 1538.65610 ETNA, Electron. Trans. Numer. Anal. 58, 378-393 (2023). MSC: 65R20 33C45 45J05 45B05 65D05 × Cite Format Result Cite Review PDF Full Text: DOI Link
Singh, P. K.; Saha Ray, S. Shifted Chebyshev spectral Galerkin method to solve stochastic Itô-Volterra integral equations driven by fractional Brownian motion appearing in mathematical physics. (English) Zbl 1538.65623 Comput. Appl. Math. 42, No. 3, Paper No. 120, 23 p. (2023). MSC: 65R20 60H30 60H35 45R05 60J65 × Cite Format Result Cite Review PDF Full Text: DOI
Askhabov, Sultan Nazhmudinovich Volterra integral equation with power nonlinearity. (Russian. English summary) Zbl 1530.45001 Chebyshevskiĭ Sb. 23, No. 5(86), 6-19 (2022). Reviewer: Alexander N. Tynda (Penza) MSC: 45D05 45L05 26D10 26D15 × Cite Format Result Cite Review PDF Full Text: DOI MNR Link
Soutome, Hiroko; Ishimura, Naoyuki; Imai, Hitoshi Global in space numerical computation of the ruin probability. (English) Zbl 1505.65323 Adv. Math. Sci. Appl. 31, No. 2, 397-406 (2022). MSC: 65R20 45D05 × Cite Format Result Cite Review PDF Full Text: Link
Mahdy, A. M. S.; Mohamed, D. Sh. Approximate solution of Cauchy integral equations by using Lucas polynomials. (English) Zbl 1513.65526 Comput. Appl. Math. 41, No. 8, Paper No. 403, 20 p. (2022). MSC: 65R20 45E05 × Cite Format Result Cite Review PDF Full Text: DOI
Potseiko, P. G.; Rovba, Ye. A. Conjugate rational Fourier-Chebyshev operator and its approximation properties. (English. Russian original) Zbl 1505.42002 Russ. Math. 66, No. 3, 35-49 (2022); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 3, 44-60 (2022). MSC: 42A10 41A50 42B20 42A20 45E05 × Cite Format Result Cite Review PDF Full Text: DOI
Alnair, Mohamed E. A.; Khidir, Ahmed A. Approximation technique for solving linear Volterra integro-differential equations with boundary conditions. (English) Zbl 1502.65267 Abstr. Appl. Anal. 2022, Article ID 2217882, 14 p. (2022). MSC: 65R20 45J05 45D05 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Biazar, Jafar; Ebrahimi, Hamed A numerical algorithm for a class of nonlinear fractional Volterra integral equations via modified hat functions. (English) Zbl 1511.65059 J. Integral Equations Appl. 34, No. 3, 295-316 (2022). MSC: 65L03 45D05 × Cite Format Result Cite Review PDF Full Text: DOI
Ji, Tianfu; Hou, Jianhua; Yang, Changqing The operational matrix of Chebyshev polynomials for solving pantograph-type Volterra integro-differential equations. (English) Zbl 1535.65312 Adv. Contin. Discrete Models 2022, Paper No. 57, 16 p. (2022). MSC: 65R20 45J05 45D05 65L60 65L20 33C45 × Cite Format Result Cite Review PDF Full Text: DOI
Atta, A. G.; Youssri, Y. H. Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel. (English) Zbl 1513.65398 Comput. Appl. Math. 41, No. 8, Paper No. 381, 19 p. (2022). MSC: 65M70 65M15 45K05 33C45 35R09 41A50 26A33 35R11 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Lakhal, Aissa; Nadir, Mostefa; Nadir, Mohamed Nasseh Application of Chebyshev polynomials to Volterra-Fredholm integral equations. (English) Zbl 1513.65525 Aust. J. Math. Anal. Appl. 19, No. 2, Article No. 8, 8 p. (2022). MSC: 65R20 45D05 45B05 45E05 45L05 × Cite Format Result Cite Review PDF Full Text: Link
Laxmi Panigrahi, Bijaya; Kumar Malik, Jitendra Chebyshev spectral projection methods for Fredholm integral equations of the second kind. (English) Zbl 1496.65238 Giri, Debasis (ed.) et al., Proceedings of the seventh international conference on mathematics and computing, ICMC 2021, Shibpur, India, March 2–5, 2021. Singapore: Springer. Adv. Intell. Syst. Comput. 1412, 801-814 (2022). MSC: 65R20 45B05 65R15 × Cite Format Result Cite Review PDF Full Text: DOI
Guo, Yuling; Wang, Zhongqing A multi-domain Chebyshev collocation method for nonlinear fractional delay differential equations. (English) Zbl 1501.65141 Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 7521-7545 (2022). MSC: 65N35 65M22 65D32 65D05 65N15 45B99 34K10 41A10 26A33 35R11 35R07 35A01 35A02 × Cite Format Result Cite Review PDF Full Text: DOI
Shaikh, Muhammad Awais; Khan, Asif R.; Mehmood, Faraz Estimates for weighted Ostrowski-Grüss type inequalities with applications. (English) Zbl 1510.26016 Analysis, München 42, No. 3, 159-169 (2022). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26D15 26A42 26D10 45H99 × Cite Format Result Cite Review PDF Full Text: DOI
Zheng, Wei-shan Convergence analysis for delay Volterra integral equation. (English) Zbl 1513.65540 Appl. Math., Ser. B (Engl. Ed.) 37, No. 2, 306-316 (2022). MSC: 65R20 45D05 41A50 65D32 × Cite Format Result Cite Review PDF Full Text: DOI
El-Gamel, Mohamed; Mohamed, Ola Nonlinear second order systems of Fredholm integro-differential equations. (English) Zbl 1490.65315 S\(\vec{\text{e}}\)MA J. 79, No. 2, 383-396 (2022). MSC: 65R20 45J05 45B05 65L60 × Cite Format Result Cite Review PDF Full Text: DOI
Bagherzadeh Tavasani, B.; Refahi Sheikhani, A. H.; Aminikhah, H. Numerical simulation of the variable order fractional integro-differential equation via Chebyshev polynomials. (English. Russian original) Zbl 1495.65238 Math. Notes 111, No. 5, 688-700 (2022); translation from Mat. Zametki 111, No. 5, 676-691 (2022). MSC: 65R20 35R11 45K05 65M70 × Cite Format Result Cite Review PDF Full Text: DOI
Issa, K.; Biazar, J.; Agboola, T. O.; Aliu, T. Perturbed Galerkin method for solving integro-differential equations. (English) Zbl 1499.65747 J. Appl. Math. 2022, Article ID 9748558, 8 p. (2022). MSC: 65R20 45J05 65L60 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Raslan, Kamal R.; Ali, Khalid K.; Mohamed, Emad M. H.; Younis, Jihad A.; Abd El salam, Mohamed A. An operational matrix technique based on Chebyshev polynomials for solving mixed Volterra-Fredholm delay integro-differential equations of variable-order. (English) Zbl 1490.65320 J. Funct. Spaces 2022, Article ID 6203440, 15 p. (2022). MSC: 65R20 45J05 45D05 45B05 34K37 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Abdel-Aty, M. A.; Abdou, M. A.; Soliman, A. A. Solvability of quadratic integral equations with singular kernel. (English) Zbl 1487.45002 J. Contemp. Math. Anal., Armen. Acad. Sci. 57, No. 1, 12-25 (2022) and Izv. Nats. Akad. Nauk Armen., Mat. 57, No. 1, 3-18 (2022). MSC: 45E05 45B05 65R20 × Cite Format Result Cite Review PDF Full Text: DOI
Wu, Qinghua; Hou, Weiwen Efficient BBFM-collocation for weakly singular oscillatory Volterra integral equations of the second kind. (English) Zbl 1499.65775 Int. J. Comput. Math. 99, No. 5, 1022-1040 (2022). MSC: 65R20 45D05 65D32 × Cite Format Result Cite Review PDF Full Text: DOI
Beni, M. Riahi Legendre wavelet method combined with the Gauss quadrature rule for numerical solution of fractional integro-differential equations. (English) Zbl 1522.65253 Iran. J. Numer. Anal. Optim. 12, No. 1, 229-249 (2022). MSC: 65R20 45J05 34A08 65T60 × Cite Format Result Cite Review PDF Full Text: DOI
Lan, Guangqiang; Zhao, Mei; Qi, Siyuan Exponential stability of \(\theta\)-EM method for nonlinear stochastic Volterra integro-differential equations. (English) Zbl 1483.65017 Appl. Numer. Math. 172, 279-291 (2022). MSC: 65C30 60H10 60H20 45D05 45J05 65R20 × Cite Format Result Cite Review PDF Full Text: DOI
Kumar, Sachin; Nieto, Juan J.; Ahmad, Bashir Chebyshev spectral method for solving fuzzy fractional Fredholm-Volterra integro-differential equation. (English) Zbl 1530.65186 Math. Comput. Simul. 192, 501-513 (2022). MSC: 65R20 45J05 34A07 34A08 45B05 45D05 65L60 × Cite Format Result Cite Review PDF Full Text: DOI
Occorsio, Donatella; Themistoclakis, Woula Some remarks on filtered polynomial interpolation at Chebyshev nodes. (English) Zbl 1540.41019 Dolomites Res. Notes Approx. 14, No. 2, 68-84 (2021). MSC: 41A10 41A05 45E05 45J05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Jafari, H.; Nemati, S.; Ganji, R. M. Operational matrices based on the shifted fifth-kind Chebyshev polynomials for solving nonlinear variable order integro-differential equations. (English) Zbl 1494.34034 Adv. Difference Equ. 2021, Paper No. 435, 14 p. (2021). MSC: 34A08 45J05 26A33 44A45 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Sadri, Khadijeh; Hosseini, Kamyar; Baleanu, Dumitru; Ahmadian, Ali; Salahshour, Soheil Bivariate Chebyshev polynomials of the fifth kind for variable-order time-fractional partial integro-differential equations with weakly singular kernel. (English) Zbl 1494.65104 Adv. Difference Equ. 2021, Paper No. 348, 26 p. (2021). MSC: 65R20 35R11 45K05 26A33 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Bambe Moutsinga, Claude Rodrigue; Pindza, Edson; Maré, Eben Comparative performance of time spectral methods for solving hyperchaotic finance and cryptocurrency systems. (English) Zbl 1498.91491 Chaos Solitons Fractals 145, Article ID 110770, 10 p. (2021). MSC: 91G60 65M70 33C45 44A15 45K05 65M12 91G80 × Cite Format Result Cite Review PDF Full Text: DOI
Panigrahi, Bijaya Laxmi; Malik, Jitendra Kumar Chebyshev spectral projection methods for two-dimensional Fredholm integral equations of second kind. (English) Zbl 1486.65298 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 70, 21 p. (2021). MSC: 65R20 45B05 65N35 × Cite Format Result Cite Review PDF Full Text: DOI
Beni, Mohsen Riahi Application of Legendre wavelet method coupled with the Gauss quadrature rule for solving fractional integro-differential equations. (Persian. English summary) Zbl 1515.62141 JAMM, J. Adv. Math. Model. 11, No. 3, 463-480 (2021). MSC: 62R20 45J05 45B05 45D05 26A33 65D32 65L60 65T60 × Cite Format Result Cite Review PDF Full Text: DOI
Öztürk, Yalçın; Demir, Atılım Ilker A spectral collocation matrix method for solving linear Fredholm integro-differential-difference equations. (English) Zbl 1476.65346 Comput. Appl. Math. 40, No. 6, Paper No. 218, 17 p. (2021). MSC: 65R20 45J05 34B10 34K06 × Cite Format Result Cite Review PDF Full Text: DOI
Sunthrayuth, Pongsakorn; Ullah, Roman; Khan, Adnan; Shah, Rasool; Kafle, Jeevan; Mahariq, Ibrahim; Jarad, Fahd Numerical analysis of the fractional-order nonlinear system of Volterra integro-differential equations. (English) Zbl 07420392 J. Funct. Spaces 2021, Article ID 1537958, 10 p. (2021). MSC: 65R20 45J05 × Cite Format Result Cite Review PDF Full Text: DOI OA License
De Bonis, M. C.; Occorsio, D.; Themistoclakis, W. Filtered interpolation for solving Prandtl’s integro-differential equations. (English) Zbl 1487.65196 Numer. Algorithms 88, No. 2, 679-709 (2021). MSC: 65R20 45E05 45P05 47G20 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Khubezhty, Sh. S. Approximate solution of a singular integral equation of the first kind using Chebyshev polynomials with zero values at both endpoints of the integration interval. (English. Russian original) Zbl 1485.65131 Comput. Math. Math. Phys. 61, No. 8, 1269-1275 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 8, 1287-1294 (2021). MSC: 65R20 45E05 × Cite Format Result Cite Review PDF Full Text: DOI
Rasol’ko, G. A.; Volkov, V. M. Method of orthogonal polynomials for an approximate solution of singular integro-differential equations as applied to two-dimensional diffraction problems. (English. Russian original) Zbl 1491.45016 Differ. Equ. 57, No. 6, 814-823 (2021); translation from Differ. Uravn. 57, No. 6, 830-839 (2021). MSC: 45L05 65R20 78A45 45E05 35R09 41A50 × Cite Format Result Cite Review PDF Full Text: DOI
Öztürk, Yalçın; Gülsu, Mustafa An operational matrix method to solve linear Fredholm-Volterra integro-differential equations with piecewise intervals. (English) Zbl 07372218 Math. Sci., Springer 15, No. 2, 189-197 (2021). MSC: 65L60 34K07 45J05 × Cite Format Result Cite Review PDF Full Text: DOI
Mohammadi, M.; Zakeri, A.; Karami, M. An approximate solution of bivariate nonlinear Fredholm integral equations using hybrid block-pulse functions with Chebyshev polynomials. (English) Zbl 07372199 Math. Sci., Springer 15, No. 1, 1-9 (2021). MSC: 65R20 45B05 45G10 × Cite Format Result Cite Review PDF Full Text: DOI
Klyuev, D. S.; Neshcheret, A. M.; Osipov, O. V.; Sokolova, Y. V.; Tabakov, D. P. Solution of a two-dimensional electrodynamic problem of determining of the current density distribution function over a strip radiating structure based on chiral metamaterials. (English) Zbl 1469.78022 Lobachevskii J. Math. 42, No. 6, 1345-1354 (2021). MSC: 78A50 45F15 65R20 65D30 41A50 × Cite Format Result Cite Review PDF Full Text: DOI
Shiri, Babak; Perfilieva, Irina; Alijani, Zahra Classical approximation for fuzzy Fredholm integral equation. (English) Zbl 1464.45002 Fuzzy Sets Syst. 404, 159-177 (2021). MSC: 45B05 × Cite Format Result Cite Review PDF Full Text: DOI
Ma, Xiaohua; Huang, Chengming Recovery of high order accuracy in spectral collocation method for linear Volterra integral equations of the third-kind with non-smooth solutions. (English) Zbl 1472.65163 J. Comput. Appl. Math. 392, Article ID 113458, 15 p. (2021). MSC: 65R20 45D05 × Cite Format Result Cite Review PDF Full Text: DOI
Meyer, Marcela Molina; Prieto Medina, Frank Richard Polar differentiation matrices for the Laplace equation in the disk under nonhomogeneous Dirichlet, Neumann and Robin boundary conditions and the biharmonic equation under nonhomogeneous Dirichlet conditions. (English) Zbl 1524.65896 Comput. Math. Appl. 89, 1-19 (2021). MSC: 65N35 35J05 35J25 65L10 31A30 45D05 41A50 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Derakhshan, MohammadHossein New numerical algorithm to solve variable-order fractional integrodifferential equations in the sense of Hilfer-Prabhakar derivative. (English) Zbl 1474.65384 Abstr. Appl. Anal. 2021, Article ID 8817794, 10 p. (2021). MSC: 65M70 45J05 34K37 35R11 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Dehbozorgi, Raziyeh; Maleknejad, Khosrow Direct operational vector scheme for first-kind nonlinear Volterra integral equations and its convergence analysis. (English) Zbl 1461.65264 Mediterr. J. Math. 18, No. 1, Paper No. 31, 22 p. (2021). MSC: 65R20 45D05 45G10 × Cite Format Result Cite Review PDF Full Text: DOI
Rabbani, Mohsen Compact operators for existence of solution and projection method with multi-wavelet bases to solve (F.IES) and error analysis in Sobolev space. (English) Zbl 1453.65461 J. Comput. Appl. Math. 382, Article ID 113090, 12 p. (2021). MSC: 65R20 45B05 42C05 65L60 65T60 × Cite Format Result Cite Review PDF Full Text: DOI
Azevedo, J. S.; Afonso, S. M.; Da Silva, M. P. G. Numerical analysis of the Chebyshev collocation method for functional Volterra integral equations. (English) Zbl 1525.65134 TEMA, Tend. Mat. Apl. Comput. 21, No. 3, 521-536 (2020). MSC: 65R20 45D05 × Cite Format Result Cite Review PDF Full Text: DOI
Moharramnia, A.; Eghbali, N.; Rassias, J. M. Mittag-Leffler-Hyers-Ulam-Rassias stability of deterministic semilinear fractional Volterra integral equation of stochastic systems driven by Brownian motion. (English) Zbl 1513.45039 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 82, No. 1, 103-110 (2020). MSC: 45M10 45R05 45D05 60H20 × Cite Format Result Cite Review PDF Full Text: Link
Yang, Y.; Heydari, M. H.; Avazzadeh, Z.; Atangana, A. Chebyshev wavelets operational matrices for solving nonlinear variable-order fractional integral equations. (English) Zbl 1486.65308 Adv. Difference Equ. 2020, Paper No. 611, 23 p. (2020). MSC: 65T60 65R20 45G10 26A33 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Ali, Khalid K.; Abd El Salam, Mohamed A.; Mohamed, Emad M. H.; Samet, Bessem; Kumar, Sunil; Osman, M. S. Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series. (English) Zbl 1486.65289 Adv. Difference Equ. 2020, Paper No. 494, 22 p. (2020). MSC: 65R20 45J05 26A33 34A08 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Çelik, Barış; Gürbüz, Mustafa Ç.; Özdemir, M. Emin; Set, Erhan On integral inequalities related to the weighted and the extended Chebyshev functionals involving different fractional operators. (English) Zbl 1503.26045 J. Inequal. Appl. 2020, Paper No. 246, 10 p. (2020). MSC: 26D15 26A33 47G10 45P05 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Alijani, Zahra Fuzzy integral equations of the second kind. (English) Zbl 1473.45001 Dissertationes Mathematicae Universitatis Tartuensis 134. Tartu: University of Tartu Press; Tartu: Univ. Tartu, Faculty of Science and Technology, Institute of Mathematics and Statistics (Diss.) (ISBN 978-9949-03-537-3/pbk; 978-9949-03-538-0/ebook). 103 p., open access (2020). MSC: 45-01 34-01 34A07 × Cite Format Result Cite Review PDF Full Text: Link Link
Dang, HuaYang; Lv, ShouYi; Fan, CuiYing; Lu, Chunsheng; Ren, JingLi; Zhao, MingHao Analysis of anti-plane interface cracks in one-dimensional hexagonal quasicrystal coating. (English) Zbl 1481.74656 Appl. Math. Modelling 81, 641-652 (2020). MSC: 74R10 74E15 45B05 × Cite Format Result Cite Review PDF Full Text: DOI
Zarnan, Jumah Aswad; Hameed, Wafaa Mustafa; Kanbar, Asan Baker A novel approach for the solution of a Love’s integral equations using Chebyshev polynomials. (English) Zbl 1469.65179 Int. J. Adv. Appl. Math. Mech. 7, No. 3, 96-101 (2020). MSC: 65R20 45B05 45L05 × Cite Format Result Cite Review PDF Full Text: Link
Mohammadi, Amir; Aghazadeh, Naser; Rezapour, Shahram Wavelet-Picard iterative method for solving singular fractional nonlinear partial differential equations with initial and boundary conditions. (English) Zbl 1474.35668 Comput. Methods Differ. Equ. 8, No. 4, 610-638 (2020). MSC: 35R11 65T60 45L05 × Cite Format Result Cite Review PDF Full Text: DOI
Shoukralla, E. S. A numerical method for solving Fredholm integral equations of the first kind with logarithmic kernels and singular unknown functions. (English) Zbl 1469.65178 Int. J. Appl. Comput. Math. 6, No. 6, Paper No. 172, 14 p. (2020). MSC: 65R20 45B05 × Cite Format Result Cite Review PDF Full Text: DOI
Zeghdane, Rebiha New numerical method for solving nonlinear stochastic integral equations. (English) Zbl 1488.65765 Vladikavkaz. Mat. Zh. 22, No. 4, 68-86 (2020). MSC: 65R20 45R05 60H20 × Cite Format Result Cite Review PDF Full Text: DOI MNR
Gu, Zhendong; Sun, Liying Chebyshev spectral collocation method for nonlinear Volterra integral equations of the second kind. (Chinese. English summary) Zbl 1474.65495 Math. Numer. Sin. 42, No. 4, 445-456 (2020). MSC: 65R20 45D05 × Cite Format Result Cite Review PDF
Nawaz, Rashid; Ahsan, Sumbal; Akbar, Muhammad; Farooq, M.; Sulaiman, M.; Ullah, Hakeem; Islam, Saeed Semi analytical solutions of second type of three-dimensional Volterra integral equations. (English) Zbl 1461.65272 Int. J. Appl. Comput. Math. 6, No. 4, Paper No. 109, 16 p. (2020). MSC: 65R20 45D05 × Cite Format Result Cite Review PDF Full Text: DOI
Fedotov, Aleksandr Ivanovich On asymptotic convergence of polynomial collocation method for one class of singular integro-differential equations. (Russian. English summary) Zbl 1463.65419 Ufim. Mat. Zh. 12, No. 1, 43-55 (2020); translation in Ufa Math. J. 12, No. 1, 43-55 (2020). MSC: 65R20 45J05 × Cite Format Result Cite Review PDF Full Text: DOI MNR
Assari, Pouria; Dehghan, Mehdi The numerical solution of nonlinear weakly singular Fredholm integral equations based on the dual-Chebyshev wavelets. (English) Zbl 1463.65415 Appl. Comput. Math. 19, No. 1, 3-19 (2020). MSC: 65R20 45B05 45E99 65T60 × Cite Format Result Cite Review PDF Full Text: Link
Li, Na; Han, Huili; Fang, Yanbing Numerical algorithm of nonlinear Fredholm integral equation based on Chebyshev neural network. (Chinese. English summary) Zbl 1463.65427 J. Jilin Univ., Sci. 58, No. 2, 277-284 (2020). MSC: 65R20 45B05 × Cite Format Result Cite Review PDF Full Text: DOI
Moutsinga, Claude Rodrigue Bambe; Pindza, Edson; Maré, Eben A time multidomain spectral method for valuing affine stochastic volatility and jump diffusion models. (English) Zbl 1453.65361 Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105159, 16 p. (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65M70 65M22 65M12 44A15 35R09 45K05 91G20 91G60 60G55 × Cite Format Result Cite Review PDF Full Text: DOI
Khubezhty, Shalva Solomonovich On numerical solution of hypersingular integral equations of the first kind. (Russian. English summary) Zbl 1463.65424 Vladikavkaz. Mat. Zh. 22, No. 1, 85-92 (2020). MSC: 65R20 45E05 × Cite Format Result Cite Review PDF Full Text: DOI MNR
Malik, Jitendra Kumar; Panigrahi, Bijaya Laxmi Discrete Chebyshev spectral projection methods for two dimensional Fredholm integral equations of the second kind. (English) Zbl 1451.65238 J. Adv. Math. Stud. 13, No. 1, 11-27 (2020). MSC: 65R20 45B05 × Cite Format Result Cite Review PDF
Wang, Lina; Yi, Lijun; Jia, Hongli An \(h\)-\(p\) version of the Chebyshev spectral collocation method for Volterra integro-differential equations with vanishing delays. (English) Zbl 1462.65097 J. Integral Equations Appl. 32, No. 1, 101-128 (2020). MSC: 65L60 65L70 45D05 45J05 65R20 × Cite Format Result Cite Review PDF Full Text: DOI Euclid
Youssri, Y. H.; Hafez, R. M. Chebyshev collocation treatment of Volterra-Fredholm integral equation with error analysis. (English) Zbl 1441.65130 Arab. J. Math. 9, No. 2, 471-480 (2020). MSC: 65R20 45B05 42C10 65F45 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Kürkçü, Ömür Kıvanç A numerical method with a control parameter for integro-differential delay equations with state-dependent bounds via generalized Mott polynomial. (English) Zbl 1452.65141 Math. Sci., Springer 14, No. 1, 43-52 (2020). MSC: 65L60 45J05 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Barikbin, M. S.; Vahidi, A. R.; Damercheli, T.; Babolian, E. An iterative shifted Chebyshev method for nonlinear stochastic Itô-Volterra integral equations. (English) Zbl 1439.65225 J. Comput. Appl. Math. 378, Article ID 112912, 12 p. (2020). MSC: 65R20 65R10 65C30 45D05 × Cite Format Result Cite Review PDF Full Text: DOI
Li, Jin; Cheng, Yongling Linear barycentric rational collocation method for solving second-order Volterra integro-differential equation. (English) Zbl 1449.45022 Comput. Appl. Math. 39, No. 2, Paper No. 92, 9 p. (2020). MSC: 45L05 65R20 65L20 × Cite Format Result Cite Review PDF Full Text: DOI
Issa, Ahmad; Qatanani, Naji; Daraghmeh, Adnan Approximation techniques for solving linear systems of Volterra integro-differential equations. (English) Zbl 1442.65457 J. Appl. Math. 2020, Article ID 2360487, 13 p. (2020). MSC: 65R20 45D05 45F05 45J05 45M10 × Cite Format Result Cite Review PDF Full Text: DOI OA License