Berwal, Sahil; Mohiuddine, S. A.; Kajla, Arun; Alotaibi, Abdullah Approximation by Riemann-Liouville type fractional \(\alpha\)-Bernstein-Kantorovich operators. (English) Zbl 07871975 Math. Methods Appl. Sci. 47, No. 11, 8275-8288 (2024). MSC: 41A10 41A25 PDFBibTeX XMLCite \textit{S. Berwal} et al., Math. Methods Appl. Sci. 47, No. 11, 8275--8288 (2024; Zbl 07871975) Full Text: DOI
Puthukkudi, Megha; Raja, Chandhini Godavarma Mollification of Fourier spectral methods with polynomial kernels. (English) Zbl 07861278 Math. Methods Appl. Sci. 47, No. 6, 4911-4931 (2024). MSC: 65D15 65M70 PDFBibTeX XMLCite \textit{M. Puthukkudi} and \textit{C. G. Raja}, Math. Methods Appl. Sci. 47, No. 6, 4911--4931 (2024; Zbl 07861278) Full Text: DOI
Heydari, M. H.; Zhagharian, Sh.; Cattani, C. A projection method based on the piecewise Chebyshev cardinal functions for nonlinear stochastic ABC fractional integro-differential equations. (English) Zbl 07861261 Math. Methods Appl. Sci. 47, No. 6, 4530-4549 (2024). MSC: 65C30 PDFBibTeX XMLCite \textit{M. H. Heydari} et al., Math. Methods Appl. Sci. 47, No. 6, 4530--4549 (2024; Zbl 07861261) Full Text: DOI
Geng, Lu-Lu; Yang, Xiao-Jun Several novel inequalities associated with the Riesz-type fractional integral operator. (English) Zbl 1539.26007 Math. Methods Appl. Sci. 47, No. 4, 2412-2418 (2024). MSC: 26D10 26A33 PDFBibTeX XMLCite \textit{L.-L. Geng} and \textit{X.-J. Yang}, Math. Methods Appl. Sci. 47, No. 4, 2412--2418 (2024; Zbl 1539.26007) Full Text: DOI
Yang, Changqing; Lv, Xiaoguang A shifted Chebyshev operational matrix method for pantograph-type nonlinear fractional differential equations. (English) Zbl 1539.34008 Math. Methods Appl. Sci. 47, No. 4, 1781-1793 (2024). MSC: 34A08 34A45 26A33 PDFBibTeX XMLCite \textit{C. Yang} and \textit{X. Lv}, Math. Methods Appl. Sci. 47, No. 4, 1781--1793 (2024; Zbl 1539.34008) Full Text: DOI
Özkan, Sabahat; Çetinkaya, İlkem Turhan An application of Lobatto-Chebyshev method to a nonhomogeneous plane problem with two cracks. (English) Zbl 1536.74271 Math. Methods Appl. Sci. 47, No. 2, 873-890 (2024). MSC: 74S05 74S20 74R05 74R10 65R20 74G70 PDFBibTeX XMLCite \textit{S. Özkan} and \textit{İ. T. Çetinkaya}, Math. Methods Appl. Sci. 47, No. 2, 873--890 (2024; Zbl 1536.74271) Full Text: DOI
Hosseininia, M.; Heydari, M. H.; Razzaghi, M. A hybrid spectral approach based on 2D cardinal and classical second kind Chebyshev polynomials for time fractional 3D Sobolev equation. (English) Zbl 1536.35356 Math. Methods Appl. Sci. 46, No. 18, 18768-18788 (2023). MSC: 35R11 26A33 65M70 65M06 65M60 33C45 PDFBibTeX XMLCite \textit{M. Hosseininia} et al., Math. Methods Appl. Sci. 46, No. 18, 18768--18788 (2023; Zbl 1536.35356) Full Text: DOI
Izadbakhsh, Alireza; Nikdel, Nazila; Deylami, Ali Adaptive control of cooperative robots in the presence of disturbances and uncertainties: a Bernstein-Chlodowsky approach. (English) Zbl 1531.93208 Math. Methods Appl. Sci. 46, No. 14, 14922-14946 (2023). MSC: 93C40 93C85 93C73 PDFBibTeX XMLCite \textit{A. Izadbakhsh} et al., Math. Methods Appl. Sci. 46, No. 14, 14922--14946 (2023; Zbl 1531.93208) Full Text: DOI
Arnone, Giuseppe; Capone, Florinda; De Luca, Roberta; Massa, Giuliana Penetrative convection in a bi-disperse porous medium. (English) Zbl 1528.76030 Math. Methods Appl. Sci. 46, No. 12, 13574-13588 (2023). MSC: 76E06 76S05 PDFBibTeX XMLCite \textit{G. Arnone} et al., Math. Methods Appl. Sci. 46, No. 12, 13574--13588 (2023; Zbl 1528.76030) Full Text: DOI OA License
Sharma, Himani; Kansal, Munish A modified Chebyshev-Halley-type iterative family with memory for solving nonlinear equations and its stability analysis. (English) Zbl 1531.65069 Math. Methods Appl. Sci. 46, No. 12, 12549-12569 (2023). MSC: 65H05 PDFBibTeX XMLCite \textit{H. Sharma} and \textit{M. Kansal}, Math. Methods Appl. Sci. 46, No. 12, 12549--12569 (2023; Zbl 1531.65069) Full Text: DOI
Priyadarshi, Gopal; Korkut, Sila Ovgu Comparative work for the source identification in parabolic inverse problem based on Taylor and Chebyshev wavelet methods. (English) Zbl 1530.65110 Math. Methods Appl. Sci. 46, No. 16, 16542-16561 (2023). MSC: 65M32 35K05 35R30 65M70 65T60 PDFBibTeX XMLCite \textit{G. Priyadarshi} and \textit{S. O. Korkut}, Math. Methods Appl. Sci. 46, No. 16, 16542--16561 (2023; Zbl 1530.65110) Full Text: DOI arXiv Link
Usman; Bhatti, M. M.; Ghaffari, Abuzar; Doranehgard, M. H. The role of radiation and bioconvection as an external agent to control the temperature and motion of fluid over the radially spinning circular surface: a theoretical analysis via Chebyshev spectral approach. (English) Zbl 1538.80001 Math. Methods Appl. Sci. 46, No. 10, 11523-11540 (2023). MSC: 80-10 80A19 80A21 76W05 76T20 76A05 76S05 92C70 82D80 35A24 35A22 65L60 60J65 PDFBibTeX XMLCite \textit{Usman} et al., Math. Methods Appl. Sci. 46, No. 10, 11523--11540 (2023; Zbl 1538.80001) Full Text: DOI
Atta, Ahmed G.; Abd-Elhameed, Waleed M.; Moatimid, Galal M.; Youssri, Youssri H. Novel spectral schemes to fractional problems with nonsmooth solutions. (English) Zbl 1530.65080 Math. Methods Appl. Sci. 46, No. 13, 14745-14764 (2023). MSC: 65L60 65L20 65L70 PDFBibTeX XMLCite \textit{A. G. Atta} et al., Math. Methods Appl. Sci. 46, No. 13, 14745--14764 (2023; Zbl 1530.65080) Full Text: DOI
Saha Ray, Santanu; Gupta, Reema A novel numerical approach based on shifted second-kind Chebyshev polynomials for solving stochastic Itô-Volterra integral equation of Abel type with weakly singular kernel. (English) Zbl 1535.65315 Math. Methods Appl. Sci. 46, No. 13, 14026-14044 (2023). MSC: 65R20 65C30 60H35 45D05 PDFBibTeX XMLCite \textit{S. Saha Ray} and \textit{R. Gupta}, Math. Methods Appl. Sci. 46, No. 13, 14026--14044 (2023; Zbl 1535.65315) Full Text: DOI
Thieu N. Vo; Razzaghi, Mohsen; Mihai, Ion An approximate solution for variable-order fractional optimal control problem via Müntz-Legendre wavelets with an application in epidemiology. (English) Zbl 1532.49003 Math. Methods Appl. Sci. 46, No. 13, 13645-13660 (2023). MSC: 49J15 42C40 26A33 92D30 PDFBibTeX XMLCite \textit{Thieu N. Vo} et al., Math. Methods Appl. Sci. 46, No. 13, 13645--13660 (2023; Zbl 1532.49003) Full Text: DOI
Adel, Mohamed; Srivastava, Hari M.; Khader, Mohamed M. Implementation of an accurate method for the analysis and simulation of electrical R-L circuits. (English) Zbl 07782487 Math. Methods Appl. Sci. 46, No. 7, 8362-8371 (2023). MSC: 41A10 65N12 65N35 PDFBibTeX XMLCite \textit{M. Adel} et al., Math. Methods Appl. Sci. 46, No. 7, 8362--8371 (2023; Zbl 07782487) Full Text: DOI
Akbarpoor Kiasary, Shahrbanoo; Yilmaz, Emrah Solving an inverse nodal problem with Herglotz-Nevanlinna functions in boundary conditions using the second-kind Chebyshev wavelets method. (English) Zbl 1538.34065 Math. Methods Appl. Sci. 46, No. 4, 4437-4448 (2023). MSC: 34A55 34B24 34A25 34C10 PDFBibTeX XMLCite \textit{S. Akbarpoor Kiasary} and \textit{E. Yilmaz}, Math. Methods Appl. Sci. 46, No. 4, 4437--4448 (2023; Zbl 1538.34065) Full Text: DOI
Öztürk, Hasen Mekki On a conjecture of Davies and Levitin. (English) Zbl 1530.15008 Math. Methods Appl. Sci. 46, No. 4, 4391-4412 (2023). MSC: 15A22 15A18 33C45 47A56 47A75 PDFBibTeX XMLCite \textit{H. M. Öztürk}, Math. Methods Appl. Sci. 46, No. 4, 4391--4412 (2023; Zbl 1530.15008) Full Text: DOI
Arsalan Sajjadi, Sayed; Saberi Najafi, Hashem; Aminikhah, Hossein A numerical study on the non-smooth solutions of the nonlinear weakly singular fractional Volterra integro-differential equations. (English) Zbl 07781786 Math. Methods Appl. Sci. 46, No. 4, 4070-4084 (2023). MSC: 65R20 34A08 47G20 45Gxx PDFBibTeX XMLCite \textit{S. Arsalan Sajjadi} et al., Math. Methods Appl. Sci. 46, No. 4, 4070--4084 (2023; Zbl 07781786) Full Text: DOI
Pan, Jiajia; Wu, Hua A Legendre-Galerkin Chebyshev collocation method for the Burgers equation with a random perturbation on boundary condition. (English) Zbl 07781283 Math. Methods Appl. Sci. 46, No. 2, 1938-1951 (2023). MSC: 35A35 65N35 PDFBibTeX XMLCite \textit{J. Pan} and \textit{H. Wu}, Math. Methods Appl. Sci. 46, No. 2, 1938--1951 (2023; Zbl 07781283) Full Text: DOI
Ghanbari, Ghodsieh; Razzaghi, Mohsen Fractional-order Chebyshev wavelet method for variable-order fractional optimal control problems. (English) Zbl 1531.49028 Math. Methods Appl. Sci. 45, No. 2, 827-842 (2022). MSC: 49L99 49M05 34A08 PDFBibTeX XMLCite \textit{G. Ghanbari} and \textit{M. Razzaghi}, Math. Methods Appl. Sci. 45, No. 2, 827--842 (2022; Zbl 1531.49028) Full Text: DOI
Tsai, Tzong-Mo; Liu, Hsiao-Fan; Buterin, Sergey; Chen, Lung-Hui; Shieh, Chung-Tsun Sturm-Liouville-type operators with frozen argument and Chebyshev polynomials. (English) Zbl 1538.34288 Math. Methods Appl. Sci. 45, No. 16, 9635-9652 (2022). MSC: 34K29 34K07 PDFBibTeX XMLCite \textit{T.-M. Tsai} et al., Math. Methods Appl. Sci. 45, No. 16, 9635--9652 (2022; Zbl 1538.34288) Full Text: DOI arXiv
Esra Köse, G.; Oruç, Ömer; Esen, Alaattin An application of Chebyshev wavelet method for the nonlinear time fractional Schrödinger equation. (English) Zbl 1527.65102 Math. Methods Appl. Sci. 45, No. 11, 6635-6649 (2022). MSC: 65M70 35R11 35Q35 PDFBibTeX XMLCite \textit{G. Esra Köse} et al., Math. Methods Appl. Sci. 45, No. 11, 6635--6649 (2022; Zbl 1527.65102) Full Text: DOI
Heydari, Mohammad Hossein; Razzaghi, Mohsen Third-kind Chebyshev cardinal functions for variable-order time fractional RLW-Burgers equation. (English) Zbl 1527.34018 Math. Methods Appl. Sci. 45, No. 10, 5670-5681 (2022). MSC: 34A08 PDFBibTeX XMLCite \textit{M. H. Heydari} and \textit{M. Razzaghi}, Math. Methods Appl. Sci. 45, No. 10, 5670--5681 (2022; Zbl 1527.34018) Full Text: DOI
Kumar, Kotapally Harish; Jiwari, Ram A note on numerical solution of classical Darboux problem. (English) Zbl 1478.65097 Math. Methods Appl. Sci. 44, No. 17, 12998-13007 (2021). MSC: 65M70 65T60 41A50 35L10 35Q05 PDFBibTeX XMLCite \textit{K. H. Kumar} and \textit{R. Jiwari}, Math. Methods Appl. Sci. 44, No. 17, 12998--13007 (2021; Zbl 1478.65097) Full Text: DOI DOI
Ibrahimoglu, Bayram Ali A new approach for constructing mock-Chebyshev grids. (English) Zbl 1512.65020 Math. Methods Appl. Sci. 44, No. 18, 14766-14775 (2021). MSC: 65D05 41A05 41A10 PDFBibTeX XMLCite \textit{B. A. Ibrahimoglu}, Math. Methods Appl. Sci. 44, No. 18, 14766--14775 (2021; Zbl 1512.65020) Full Text: DOI
Singh, Harendra; Singh, Amit Kumar; Pandey, Rajesh K.; Kumar, Devendra; Singh, Jagdev An efficient computational approach for fractional Bratu’s equation arising in electrospinning process. (English) Zbl 1504.65145 Math. Methods Appl. Sci. 44, No. 13, 10225-10238 (2021). MSC: 65L05 34A08 62L20 PDFBibTeX XMLCite \textit{H. Singh} et al., Math. Methods Appl. Sci. 44, No. 13, 10225--10238 (2021; Zbl 1504.65145) Full Text: DOI
Abdelkawy, Mohamed A.; Mahmoud, Emad E.; Abualnaja, Kholod M.; Abdel-Aty, Abdel-Haleem; Kumar, Sunil Accurate spectral algorithm for two-dimensional variable-order fractional percolation equations. (English) Zbl 1512.65223 Math. Methods Appl. Sci. 44, No. 7, 6228-6238 (2021). MSC: 65M70 35B40 35R11 PDFBibTeX XMLCite \textit{M. A. Abdelkawy} et al., Math. Methods Appl. Sci. 44, No. 7, 6228--6238 (2021; Zbl 1512.65223) Full Text: DOI
Heydari, M. H.; Avazzadeh, Z. Fibonacci polynomials for the numerical solution of variable-order space-time fractional Burgers-Huxley equation. (English) Zbl 1496.65179 Math. Methods Appl. Sci. 44, No. 8, 6774-6786 (2021). MSC: 65M70 65M15 65H04 11B39 41A10 26A33 35R11 35Q53 PDFBibTeX XMLCite \textit{M. H. Heydari} and \textit{Z. Avazzadeh}, Math. Methods Appl. Sci. 44, No. 8, 6774--6786 (2021; Zbl 1496.65179) Full Text: DOI
Kilar, Neslihan; Simsek, Yilmaz Computational formulas and identities for new classes of Hermite-based Milne-Thomson type polynomials: analysis of generating functions with Euler’s formula. (English) Zbl 1470.05017 Math. Methods Appl. Sci. 44, No. 8, 6731-6762 (2021). MSC: 05A15 11B68 11B73 26C05 22B10 PDFBibTeX XMLCite \textit{N. Kilar} and \textit{Y. Simsek}, Math. Methods Appl. Sci. 44, No. 8, 6731--6762 (2021; Zbl 1470.05017) Full Text: DOI arXiv
Saw, Vijay; Kumar, Sushil The Chebyshev collocation method for a class of time fractional convection-diffusion equation with variable coefficients. (English) Zbl 1496.65185 Math. Methods Appl. Sci. 44, No. 8, 6666-6678 (2021). MSC: 65M70 65M06 65N35 65M12 65M15 41A50 26A33 35R11 PDFBibTeX XMLCite \textit{V. Saw} and \textit{S. Kumar}, Math. Methods Appl. Sci. 44, No. 8, 6666--6678 (2021; Zbl 1496.65185) Full Text: DOI
Youssri, Youssri H.; Abd-Elhameed, Waleed M.; Abdelhakem, Mohamed A robust spectral treatment of a class of initial value problems using modified Chebyshev polynomials. (English) Zbl 1512.65171 Math. Methods Appl. Sci. 44, No. 11, 9224-9236 (2021). MSC: 65L60 33C45 65L05 PDFBibTeX XMLCite \textit{Y. H. Youssri} et al., Math. Methods Appl. Sci. 44, No. 11, 9224--9236 (2021; Zbl 1512.65171) Full Text: DOI
Heydari, Mohammad Hossein; Razzaghi, Mohsen; Avazzadeh, Zakieh Numerical investigation of variable-order fractional Benjamin-Bona-Mahony-Burgers equation using a pseudo-spectral method. (English) Zbl 1486.65197 Math. Methods Appl. Sci. 44, No. 11, 8669-8683 (2021). MSC: 65M70 65M06 65M15 65D07 33C45 41A50 26A33 35R11 35Q53 PDFBibTeX XMLCite \textit{M. H. Heydari} et al., Math. Methods Appl. Sci. 44, No. 11, 8669--8683 (2021; Zbl 1486.65197) Full Text: DOI
Huang, Yu; Zadeh, Fatemeh Mohammadi; Skandari, Mohammad Hadi Noori; Tehrani, Hojjat Ahsani; Tohidi, Emran Space-time Chebyshev spectral collocation method for nonlinear time-fractional Burgers equations based on efficient basis functions. (English) Zbl 1473.65234 Math. Methods Appl. Sci. 44, No. 5, 4117-4136 (2021). MSC: 65M70 65G99 65D05 PDFBibTeX XMLCite \textit{Y. Huang} et al., Math. Methods Appl. Sci. 44, No. 5, 4117--4136 (2021; Zbl 1473.65234) Full Text: DOI
Hamid, Muhammad; Usman, Muhammad; Wang, Wei; Tian, Zhenfu Hybrid fully spectral linearized scheme for time-fractional evolutionary equations. (English) Zbl 1486.65196 Math. Methods Appl. Sci. 44, No. 5, 3890-3912 (2021). MSC: 65M70 65M12 65M15 41A50 26A33 35R11 35Q53 PDFBibTeX XMLCite \textit{M. Hamid} et al., Math. Methods Appl. Sci. 44, No. 5, 3890--3912 (2021; Zbl 1486.65196) Full Text: DOI
Mittal, Avinash K.; Balyan, Lokendra K. Numerical solutions of time and space fractional coupled Burgers equations using time-space Chebyshev pseudospectral method. (English) Zbl 1486.65204 Math. Methods Appl. Sci. 44, No. 4, 3127-3137 (2021). MSC: 65M70 65M15 65D05 65H10 35C07 35C11 35Q53 26A33 35R11 PDFBibTeX XMLCite \textit{A. K. Mittal} and \textit{L. K. Balyan}, Math. Methods Appl. Sci. 44, No. 4, 3127--3137 (2021; Zbl 1486.65204) Full Text: DOI
Khalighi, Moein; Amirianmatlob, Mohammad; Malek, Alaeddin A new approach to solving multiorder time-fractional advection-diffusion-reaction equations using BEM and Chebyshev matrix. (English) Zbl 1473.65332 Math. Methods Appl. Sci. 44, No. 4, 2964-2984 (2021). MSC: 65N38 65N35 35R11 PDFBibTeX XMLCite \textit{M. Khalighi} et al., Math. Methods Appl. Sci. 44, No. 4, 2964--2984 (2021; Zbl 1473.65332) Full Text: DOI arXiv OA License
Heydari, Mohammad Hossein; Avazzadeh, Zakieh; Cattani, Carlo Discrete Chebyshev polynomials for nonsingular variable-order fractional KdV Burgers’ equation. (English) Zbl 1470.35394 Math. Methods Appl. Sci. 44, No. 2, 2158-2170 (2021). MSC: 35R11 35C10 35Q53 PDFBibTeX XMLCite \textit{M. H. Heydari} et al., Math. Methods Appl. Sci. 44, No. 2, 2158--2170 (2021; Zbl 1470.35394) Full Text: DOI
Hosseininia, M.; Heydari, M. H.; Hooshmandasl, M. R.; Ghaini, F. M. Maalek; Avazzadeh, Z. A numerical method based on the Chebyshev cardinal functions for variable-order fractional version of the fourth-order 2D Kuramoto-Sivashinsky equation. (English) Zbl 1486.65198 Math. Methods Appl. Sci. 44, No. 2, 1831-1842 (2021). MSC: 65M70 65M06 65N35 41A50 26A33 35R11 35Q53 PDFBibTeX XMLCite \textit{M. Hosseininia} et al., Math. Methods Appl. Sci. 44, No. 2, 1831--1842 (2021; Zbl 1486.65198) Full Text: DOI
Kumar, Sachin; Aguilar, José Francisco Gómez; Pandey, Prashant Numerical solutions for the reaction-diffusion, diffusion-wave, and Cattaneo equations using a new operational matrix for the Caputo-Fabrizio derivative. (English) Zbl 1459.65199 Math. Methods Appl. Sci. 43, No. 15, 8595-8607 (2020). Reviewer: Dana Černá (Liberec) MSC: 65M70 35K57 35R11 26A33 35Q79 PDFBibTeX XMLCite \textit{S. Kumar} et al., Math. Methods Appl. Sci. 43, No. 15, 8595--8607 (2020; Zbl 1459.65199) Full Text: DOI
Hernández-Verón, Miguel A.; Romero, Natalia Numerical analysis for the quadratic matrix equations from a modification of fixed-point type. (English) Zbl 1431.65058 Math. Methods Appl. Sci. 42, No. 17, 5856-5866 (2019). MSC: 65F45 15A24 PDFBibTeX XMLCite \textit{M. A. Hernández-Verón} and \textit{N. Romero}, Math. Methods Appl. Sci. 42, No. 17, 5856--5866 (2019; Zbl 1431.65058) Full Text: DOI
Semary, Mourad S.; Hassan, Hany N.; Radwan, Ahmed G. The minimax approach for a class of variable order fractional differential equation. (English) Zbl 1418.34016 Math. Methods Appl. Sci. 42, No. 8, 2734-2745 (2019). MSC: 34A08 34A12 34A45 PDFBibTeX XMLCite \textit{M. S. Semary} et al., Math. Methods Appl. Sci. 42, No. 8, 2734--2745 (2019; Zbl 1418.34016) Full Text: DOI
Mirzaee, Farshid; Alipour, Sahar Fractional-order orthogonal Bernstein polynomials for numerical solution of nonlinear fractional partial Volterra integro-differential equations. (English) Zbl 1423.45006 Math. Methods Appl. Sci. 42, No. 6, 1870-1893 (2019). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 45K05 65R20 35R11 45G10 45D05 PDFBibTeX XMLCite \textit{F. Mirzaee} and \textit{S. Alipour}, Math. Methods Appl. Sci. 42, No. 6, 1870--1893 (2019; Zbl 1423.45006) Full Text: DOI
Faustino, Nelson A note on the discrete Cauchy-Kovalevskaya extension. (English) Zbl 1415.30030 Math. Methods Appl. Sci. 42, No. 4, 1312-1320 (2019). MSC: 30G35 39A12 42B10 33E12 PDFBibTeX XMLCite \textit{N. Faustino}, Math. Methods Appl. Sci. 42, No. 4, 1312--1320 (2019; Zbl 1415.30030) Full Text: DOI arXiv
Izadkhah, Mohammad Mahdi; Saberi-Nadjafi, Jafar; Toutounian, Faezeh An extension of the Gegenbauer pseudospectral method for the time fractional Fokker-Planck equation. (English) Zbl 1392.65020 Math. Methods Appl. Sci. 41, No. 4, 1301-1315 (2018). MSC: 65D99 26A33 65M70 34A08 65F10 PDFBibTeX XMLCite \textit{M. M. Izadkhah} et al., Math. Methods Appl. Sci. 41, No. 4, 1301--1315 (2018; Zbl 1392.65020) Full Text: DOI
Zhao, Fuqiang; Huang, Qingxue; Xie, Jiaquan; Ma, Lifeng Matrix method based on the shifted Chebyshev polynomials for solving fractional-order PDEs with initial-boundary conditions. (English) Zbl 1388.35057 Math. Methods Appl. Sci. 41, No. 3, 1114-1124 (2018). MSC: 35J60 35R11 PDFBibTeX XMLCite \textit{F. Zhao} et al., Math. Methods Appl. Sci. 41, No. 3, 1114--1124 (2018; Zbl 1388.35057) Full Text: DOI
Felhi, Abdelbasset A note on “Convergence and best proximity points for Berinde’s cyclic contraction with proximally complete property”. (English) Zbl 1395.54043 Math. Methods Appl. Sci. 41, No. 1, 140-143 (2018). MSC: 54H25 54E40 41A50 PDFBibTeX XMLCite \textit{A. Felhi}, Math. Methods Appl. Sci. 41, No. 1, 140--143 (2018; Zbl 1395.54043) Full Text: DOI
Foroutan, Mohammadreza; Ebadian, Ali; Najafzadeh, Shahram Analysis of unsteady stagnation-point flow over a shrinking sheet and solving the equation with rational Chebyshev functions. (English) Zbl 1408.76137 Math. Methods Appl. Sci. 40, No. 7, 2610-2622 (2017). MSC: 76D05 35Q35 65M70 76D10 76M22 PDFBibTeX XMLCite \textit{M. Foroutan} et al., Math. Methods Appl. Sci. 40, No. 7, 2610--2622 (2017; Zbl 1408.76137) Full Text: DOI
Sanhan, Sujitra; Mongkolkeha, Chirasak Convergence and best proximity points for Berinde’s cyclic contraction with proximally complete property. (English) Zbl 1382.54031 Math. Methods Appl. Sci. 39, No. 16, 4866-4873 (2016). MSC: 54H25 54E40 41A50 PDFBibTeX XMLCite \textit{S. Sanhan} and \textit{C. Mongkolkeha}, Math. Methods Appl. Sci. 39, No. 16, 4866--4873 (2016; Zbl 1382.54031) Full Text: DOI
Gupta, A. K.; Ray, S. Saha A novel attempt for finding comparatively accurate solution for sine-Gordon equation comprising Riesz space fractional derivative. (English) Zbl 1416.65379 Math. Methods Appl. Sci. 39, No. 11, 2871-2882 (2016). MSC: 65M70 35R11 35L71 65T60 PDFBibTeX XMLCite \textit{A. K. Gupta} and \textit{S. S. Ray}, Math. Methods Appl. Sci. 39, No. 11, 2871--2882 (2016; Zbl 1416.65379) Full Text: DOI
Çelik, İbrahim Chebyshev wavelet collocation method for solving generalized Burgers-Huxley equation. (English) Zbl 1333.65116 Math. Methods Appl. Sci. 39, No. 3, 366-377 (2016). MSC: 65M70 35Q53 65T60 PDFBibTeX XMLCite \textit{İ. Çelik}, Math. Methods Appl. Sci. 39, No. 3, 366--377 (2016; Zbl 1333.65116) Full Text: DOI
Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Hafez, R. M. A highly accurate Jacobi collocation algorithm for systems of high-order linear differential-difference equations with mixed initial conditions. (English) Zbl 1335.65065 Math. Methods Appl. Sci. 38, No. 14, 3022-3032 (2015). Reviewer: Ivan Secrieru (Chişinău) MSC: 65L60 65L50 34K28 34K06 65L03 65L05 PDFBibTeX XMLCite \textit{A. H. Bhrawy} et al., Math. Methods Appl. Sci. 38, No. 14, 3022--3032 (2015; Zbl 1335.65065) Full Text: DOI
Morais, J.; Kou, K. I.; Le, H. T. Generalized holomorphic orthogonal function systems over infinite cylinders. (English) Zbl 1370.30022 Math. Methods Appl. Sci. 38, No. 12, 2574-2588 (2015). MSC: 30G35 PDFBibTeX XMLCite \textit{J. Morais} et al., Math. Methods Appl. Sci. 38, No. 12, 2574--2588 (2015; Zbl 1370.30022) Full Text: DOI
Fakhar-Izadi, Farhad; Dehghan, Mehdi A spectral element method using the modal basis and its application in solving second-order nonlinear partial differential equations. (English) Zbl 1307.65138 Math. Methods Appl. Sci. 38, No. 3, 478-504 (2015). MSC: 65M70 65M06 65M20 65T50 PDFBibTeX XMLCite \textit{F. Fakhar-Izadi} and \textit{M. Dehghan}, Math. Methods Appl. Sci. 38, No. 3, 478--504 (2015; Zbl 1307.65138) Full Text: DOI
Khader, M. M.; Kumar, Sunil An accurate numerical method for solving the linear fractional Klein-Gordon equation. (English) Zbl 1309.65114 Math. Methods Appl. Sci. 37, No. 18, 2972-2979 (2014). MSC: 65M70 35L20 35R11 PDFBibTeX XMLCite \textit{M. M. Khader} and \textit{S. Kumar}, Math. Methods Appl. Sci. 37, No. 18, 2972--2979 (2014; Zbl 1309.65114) Full Text: DOI
Öztürk, Yalçın; Gülsu, Mustafa An operational matrix method for solving Lane-Emden equations arising in astrophysics. (English) Zbl 1299.74181 Math. Methods Appl. Sci. 37, No. 15, 2227-2235 (2014). MSC: 74S25 34K28 34B16 PDFBibTeX XMLCite \textit{Y. Öztürk} and \textit{M. Gülsu}, Math. Methods Appl. Sci. 37, No. 15, 2227--2235 (2014; Zbl 1299.74181) Full Text: DOI
Peiraviminaei, A.; Ghoreishi, F. Numerical solutions based on Chebyshev collocation method for singularly perturbed delay parabolic PDEs. (English) Zbl 1304.65228 Math. Methods Appl. Sci. 37, No. 14, 2112-2119 (2014). Reviewer: Qin Meng Zhao (Beijing) MSC: 65M70 35B25 35K20 35R10 65M15 PDFBibTeX XMLCite \textit{A. Peiraviminaei} and \textit{F. Ghoreishi}, Math. Methods Appl. Sci. 37, No. 14, 2112--2119 (2014; Zbl 1304.65228) Full Text: DOI
Fakhar-Izadi, Farhad; Dehghan, Mehdi An efficient pseudo-spectral Legendre-Galerkin method for solving a nonlinear partial integro-differential equation arising in population dynamics. (English) Zbl 1279.65143 Math. Methods Appl. Sci. 36, No. 12, 1485-1511 (2013). MSC: 65R20 45K05 45G10 PDFBibTeX XMLCite \textit{F. Fakhar-Izadi} and \textit{M. Dehghan}, Math. Methods Appl. Sci. 36, No. 12, 1485--1511 (2013; Zbl 1279.65143) Full Text: DOI
Khader, M. M.; Hendy, A. S. A numerical technique for solving fractional variational problems. (English) Zbl 1281.65094 Math. Methods Appl. Sci. 36, No. 10, 1281-1289 (2013). Reviewer: Hans Benker (Merseburg) MSC: 65K10 34A08 34H05 49J15 PDFBibTeX XMLCite \textit{M. M. Khader} and \textit{A. S. Hendy}, Math. Methods Appl. Sci. 36, No. 10, 1281--1289 (2013; Zbl 1281.65094) Full Text: DOI
Qian, Tao; Sprößig, Wolfgang; Wang, Jinxun Adaptive Fourier decomposition of functions in quaternionic Hardy spaces. (English) Zbl 1254.30086 Math. Methods Appl. Sci. 35, No. 1, 43-64 (2012). MSC: 30G35 30H10 41A20 41A25 41A50 46E20 PDFBibTeX XMLCite \textit{T. Qian} et al., Math. Methods Appl. Sci. 35, No. 1, 43--64 (2012; Zbl 1254.30086) Full Text: DOI
Morais, J.; Le, H. T. Orthogonal Appell systems of monogenic functions in the cylinder. (English) Zbl 1226.30045 Math. Methods Appl. Sci. 34, No. 12, 1472-1486 (2011). Reviewer: Nele De Schepper (Gent) MSC: 30G35 31B05 PDFBibTeX XMLCite \textit{J. Morais} and \textit{H. T. Le}, Math. Methods Appl. Sci. 34, No. 12, 1472--1486 (2011; Zbl 1226.30045) Full Text: DOI
Motsa, S. S.; Sibanda, P.; Shateyi, S. On a new quasi-linearization method for systems of nonlinear boundary value problems. (English) Zbl 1414.76005 Math. Methods Appl. Sci. 34, No. 11, 1406-1413 (2011). MSC: 76A05 65N35 65L60 76M22 76M45 PDFBibTeX XMLCite \textit{S. S. Motsa} et al., Math. Methods Appl. Sci. 34, No. 11, 1406--1413 (2011; Zbl 1414.76005) Full Text: DOI
Parand, K.; Rezaei, A. R.; Taghavi, A. Numerical approximations for population growth model by rational Chebyshev and Hermite functions collocation approach: a comparison. (English) Zbl 1204.65159 Math. Methods Appl. Sci. 33, No. 17, 2076-2086 (2010). MSC: 65R20 92D25 45J05 45G10 45D05 PDFBibTeX XMLCite \textit{K. Parand} et al., Math. Methods Appl. Sci. 33, No. 17, 2076--2086 (2010; Zbl 1204.65159) Full Text: DOI arXiv
Abdou, M. A.; Basseem, M. A main theorem of spectral relationships for Volterra-Fredholm integral equation of the first kind and its applications. (English) Zbl 1198.45002 Math. Methods Appl. Sci. 33, No. 13, 1523-1531 (2010). Reviewer: Kun Soo Chang (Seoul) MSC: 45D05 45B05 45E10 65R20 PDFBibTeX XMLCite \textit{M. A. Abdou} and \textit{M. Basseem}, Math. Methods Appl. Sci. 33, No. 13, 1523--1531 (2010; Zbl 1198.45002) Full Text: DOI
Hasan, Osman; Tahar, Sofiène Formal verification of tail distribution bounds in the HOL theorem prover. (English) Zbl 1167.68053 Math. Methods Appl. Sci. 32, No. 4, 480-504 (2009). MSC: 68T15 60A05 60E15 68W40 PDFBibTeX XMLCite \textit{O. Hasan} and \textit{S. Tahar}, Math. Methods Appl. Sci. 32, No. 4, 480--504 (2009; Zbl 1167.68053) Full Text: DOI Link
Hadeler, K. P.; Jukić, Dragan; Sabo, Kristian Least-squares problems for Michaelis-Menten kinetics. (English) Zbl 1114.92035 Math. Methods Appl. Sci. 30, No. 11, 1231-1241 (2007). MSC: 92C45 26D15 65K99 PDFBibTeX XMLCite \textit{K. P. Hadeler} et al., Math. Methods Appl. Sci. 30, No. 11, 1231--1241 (2007; Zbl 1114.92035) Full Text: DOI
Webber, Mark The destabilizing effect of boundary slip on Bénard convection. (English) Zbl 1091.35013 Math. Methods Appl. Sci. 29, No. 7, 819-838 (2006). MSC: 35B35 76R10 76E06 76E30 35Q35 PDFBibTeX XMLCite \textit{M. Webber}, Math. Methods Appl. Sci. 29, No. 7, 819--838 (2006; Zbl 1091.35013) Full Text: DOI
Elnagar, Gamal; Razzaghi, Mohsen An alternative method for a classical problem in the calculus of variations. (English) Zbl 0855.49021 Math. Methods Appl. Sci. 19, No. 13, 1091-1097 (1996). Reviewer: A.V.Balakrishnan (Los Angeles) MSC: 49M30 PDFBibTeX XMLCite \textit{G. Elnagar} and \textit{M. Razzaghi}, Math. Methods Appl. Sci. 19, No. 13, 1091--1097 (1996; Zbl 0855.49021) Full Text: DOI
Freeden, W. Spline methods in geodetic approximation problems. (English) Zbl 0489.65019 Math. Methods Appl. Sci. 4, 382-396 (1982). MSC: 65E05 65D07 86A30 31B20 41A15 41A50 PDFBibTeX XMLCite \textit{W. Freeden}, Math. Methods Appl. Sci. 4, 382--396 (1982; Zbl 0489.65019) Full Text: DOI
Freeden, W. On spherical spline interpolation and approximation. (English) Zbl 0481.41007 Math. Methods Appl. Sci. 3, 551-575 (1981). MSC: 41A15 41A50 41A05 86A20 86A30 PDFBibTeX XMLCite \textit{W. Freeden}, Math. Methods Appl. Sci. 3, 551--575 (1981; Zbl 0481.41007) Full Text: DOI