×

Measurable selections of multivalued mappings and projections of measurable sets. (English) Zbl 0423.28010


MSC:

28B20 Set-valued set functions and measures; integration of set-valued functions; measurable selections
28A05 Classes of sets (Borel fields, \(\sigma\)-rings, etc.), measurable sets, Suslin sets, analytic sets
54C60 Set-valued maps in general topology

Citations:

Zbl 0407.28005
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] R. J. Aumann, ”Measurable utility and measurable choice theorem,” Proc. of the Coll. Internat. C. N. R. S. 1967, ”La Décision,” Aix-en-Provence (1969), pp. 15-26.
[2] M.-F. Sainte-Beuve, ”On the extension of the von Neumann?Aumann theorem,” J. Functional Anal.,17, No. 1, 112-129 (1974). · Zbl 0286.28005
[3] S. J. Leese, ”Multifunctions of Souslin type,” Bull. Aust. Math. Soc.,11, 395-411 (1974). · Zbl 0287.04005
[4] Ch. Castaing, Sur les Multi-Applications Measurables, Thesis, Caen (1967).
[5] K. Kuratowski, Topology, Vol. 1, Academic Press (1966).
[6] V. L. Levin, ”Convex integral functionals and the theory of lifting,” Usp. Mat. Nauk,30, No. 2, 115-178 (1975). · Zbl 0332.46031
[7] C. Dellacherie and P.-A. Meyer, Probabilités et Potentiels, Chapitres I á IV, Publ. de l’Institut de Math. de l’Université de StrasbourgXV, Hermann, Paris (1975).
[8] V. A. Rokhlin, ”Selected topics in the metric theory of dynamic systems,” Usp. Mat. Nauk,4, No. 2, 57-128 (1949).
[9] K. Kuratowski and C. Ryll-Nardzewski, ”A general theorem on selectors,” Bull. Acad. Polon. Sci. Ser. Math., Astr., Phys.,13, 397-403 (1965). · Zbl 0152.21403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.