×

zbMATH — the first resource for mathematics

A uniform dispersion equation in a multichannel problem. (English) Zbl 0487.76075
MSC:
76Q05 Hydro- and aero-acoustics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. D. Landau and E. M. Lifshits, Quantum Mechanics [in Russian], Vol. 1, Moscow (1948).
[2] G. V. Dubrovskii, ?The quasiclassical approximations for scattering phases,? Opt. Spektrosk.,17, No. 5, 771?775 (1964).
[3] N. Fröman and U. Myhrman, ?The energy levels of double-well potentials,? Arkiv Fys.,40, No. 36, 497?508 (1970).
[4] N. Froman, P. Froman, U. Myhrman, and R. Paulsson, ?On the quantal treatment of the double-well potential problem by means of certain phase-integral approximations,? Ann. Phys.,74, No. 2, 314?323 (1970). · doi:10.1016/0003-4916(72)90143-1
[5] W. Hecht, ?An analytic approximation method for the one-dimensional Schrödinger equation,? J. Math. Phys.,14, No. 11, 1519?1521 (1973). · Zbl 0278.34011 · doi:10.1063/1.1666219
[6] V. S. Buldyrev and D. K. Ozerov, ?Dispersion equations for high-frequency Love waves in an inhomogeneous half space,? Methods and Programs for the Analysis of Seismic Observations, No. 3, 254?281 (1967).
[7] V. A. Fock, Electromagnetic Diffraction and Propagation Problems, Pergamon (1965).
[8] F. W. Olver, ?Uniform asymptotic expansions of solutions of linear second-order differential equations for large values of the parameter,? Phil. Trans. R. Soc. London,A-250, 479?517 (1958). · Zbl 0083.05701 · doi:10.1098/rsta.1958.0005
[9] V. S. Buldyrev and S. Yu. Slavyanov, ?Uniform asymptotic expansions for solutions of an equation of Schrödinger type with two turning points,? Vestn. Leningr. Gos. Univ., No. 4, 70?84 (1968).
[10] H. Bateman and A. Erdelyi, Higher Transcendental Functions, McGraw-Hill.
[11] V. S. Buldyrev and A. A. Nedelin, ?Uniform asymptotic formulas for parabolic-cylinder functions in the complex plane of the index,? Vopr. Din. Teor. Raspr. Seism. Voln.,14, 61?83 (1974).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.