×

zbMATH — the first resource for mathematics

Distribution of eigenvalues of operators which are nearly self-adjoint. (English) Zbl 0481.47002

MSC:
47A10 Spectrum, resolvent
47A12 Numerical range, numerical radius
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. V. Keldysh, Dokl. Akad. Nauk SSSR,77, No. 1, 11-14 (1951).
[2] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Non-Self-Adjoint Operators, Amer. Math. Soc. (1969). · Zbl 0181.13504
[3] A. S. Markus and V. I. Matsaev, Funkts. Anal. Prilozhen.,13, No. 3, 93-94 (1979).
[4] M. Sh. Birman and M. Z. Solomyak, Results in Science and Technology. Mathematical Analysis [in Russian], Vol. 14, VINITI, Moscow (1977), pp. 5-58.
[5] V. A. Mikhailets, Usp. Mat. Nauk,34, No. 4, 153 (1979).
[6] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York (1966). · Zbl 0148.12601
[7] K. Kh. Boimatov, Funkts. Anal. Prilozhen.,11, No. 4, 74-75 (1977). · Zbl 0372.73084 · doi:10.1007/BF01135545
[8] V. B. Lidskii, Tr. Mosk. Mat. Obsh.,11, 3-35 (1962).
[9] M. S. Agranovich, Funkts. Anal. Prilozhen.,10, No. 3, 1-12 (1976). · Zbl 0375.35048 · doi:10.1007/BF01075764
[10] M. S. Agranovich, ”Spectral properties of the diffraction problem,” in: The Generalized Method of Characteristic Oscillations in Diffraction Theory [in Russian], N. N. Voitovich, B. Z. Katselenbaum, and A. N. Sivov, Nauka, Moscow (1977), pp. 289-416.
[11] A. A. Shkalikov, Usp. Mat. Nauk,34, No. 4, 152-153 (1979).
[12] A. G. Kostyuchenko and I. S. Sargsyan, The Distribution of Eigenvalues [in Russian], Nauka, Moscow (1979). · Zbl 0478.34022
[13] V. B. Lidskii, Tr. Mosk. Mat. Obsh.,9, 45-80 (1960).
[14] A. G. Kostyuchenko, ”Asymptotic behavior of the spectral function of a self-adjoint elliptic operator,” in: Fourth Mathematical School [in Russian], Kiev (1968), pp. 42-117.
[15] V. A. Mikhailets, Usp. Mat. Nauk,35, No. 1, 205-206 (1980).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.