×

zbMATH — the first resource for mathematics

Subalgebras of free Lie p-superalgebras. (English. Russian original) Zbl 0658.17020
Math. Notes 43, No. 2, 99-106 (1988); translation from Mat. Zametki 43, No. 2, 178-191 (1988).
See the review in Zbl 0646.17008.

MSC:
17B70 Graded Lie (super)algebras
17A70 Superalgebras
17B05 Structure theory for Lie algebras and superalgebras
17B50 Modular Lie (super)algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. I. Shirshov, ?Subalgebras of free Lie algebras,? Mat. Sb.,33, No. 2, 441-452 (1953). · Zbl 0052.03004
[2] E. Witt, ?Die Unterringe der freien Lieschen Ringe,? Math. Z.,64, No. 2, 195-216 (1956). · Zbl 0070.02903 · doi:10.1007/BF01166568
[3] P. M. Cohn, ?Subalgebras of free associative algebras,? Proc. London Math. Soc.,14, No. 56, 618-632 (1964). · Zbl 0142.27704 · doi:10.1112/plms/s3-14.4.618
[4] G. P. Kukin, ?On subalgebras of free Lie p-algebras,? Algebra Logika,11, No. 5, 535-550 (1972). · Zbl 0267.17008
[5] A. A. Mikhalev, ?Free Lie p-superalgebras,? Vestn. Mosk. Gos. Univ., Ser. 1. Mat. Mekh., No. 6, 80 (1986). · Zbl 0608.17002
[6] A. A. Mikhalev, ?Subalgebras of free Lie superalgebras and of free Lie p-superalgebras,? in: Materials of the 24th All-Union Student Scientific Conference. Mathematics, Novosibirsk State Univ. (1986), pp. 46-50.
[7] Yu. A. Bakhturin, Identities in Lie Algebras [in Russian], Nauka, Moscow (1985). · Zbl 0571.17001
[8] A. A. Mikhalev, ?Subalgebras of free colored Lie superalgebras,? Mat. Zametki,37, No. 5, 653-661 (1985). · Zbl 0576.17004
[9] A. A. Mikhalev, ?Free colored Lie superalgebras,? Dokl. Akad. Nauk SSSR,286, No. 3, 551-554 (1986).
[10] A. I. Shirshov, ?On free Lie rings,? Mat. Sb.,45, No. 2, 113-122 (1958). · Zbl 0080.02603
[11] A. S. Shtern, ?Free Lie superalgebras,? Sib. Mat. Zh.,27, No. 1, 170-174 (1986). · Zbl 0589.17006
[12] M. Scheunert, The Theory of Lie Superalgebras, Lecture Notes in Mathematics, No. 716, Springer-Verlag, Heidelberg (1979). · Zbl 0407.17001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.