Lagrange cylinders and minimal annuli. (Lagrange Zylinder und minimale Annuli.) (German) Zbl 1285.53068

Bonner Mathematische Schriften 398. Bonn: Univ. Bonn, Mathematisches Institut; Bonn: Univ. Bonn, Mathematisch-Naturwissenschaftliche Fakultät (Diss.). 72 p. (2010).
The author studies the question when two Lagrangian submanifolds in a symplectic manifold are isotopic. To make the problem more accessible, he assumes that the symplectic manifold is a cotangent bundle and that the Lagrangian submanifolds are Lagrange cylinders. To construct the isotopy he uses minimal surfaces, as they are easier to work with than pseudoholomorphic curves.


53D12 Lagrangian submanifolds; Maslov index
57R52 Isotopy in differential topology
Full Text: Link