×

zbMATH — the first resource for mathematics

On some queue length controlled stochastic processes. (English) Zbl 0711.60098
Summary: The authors study the input, output and queueing processes in a general controlled single-server bulk queueing system. It is supposed that inter- arrival time, service time, batch size of arriving units and the capacity of the server depend on the queue length. The authors establish an ergodicity criterion for both the queueing process with continuous time parameter and the embedded process, study their transient and steady state behavior and prove ergodic theorems for some functionals of the input, output and queueing processes. The following results are obtained:
invariant probability measure of the embedded process, stationary distribution of the process with continuous time parameter, expected value of a busy period, rates of input and output processes and the relative speed of convergence of the expected queue length. Various examples (including an optimization problem) illustrate the methods developed in the paper.
MSC:
60K25 Queueing theory (aspects of probability theory)
60K10 Applications of renewal theory (reliability, demand theory, etc.)
90B22 Queues and service in operations research
90B25 Reliability, availability, maintenance, inspection in operations research
PDF BibTeX XML Cite
Full Text: DOI EuDML