Kelarev, A. V. On the Jacobson radical of graded rings. (English) Zbl 0765.16013 Commentat. Math. Univ. Carol. 33, No. 1, 21-24 (1992). Let \(S\) be a commutative semigroup. Then the Jacobson radical \(J(R)\) of each semigroup-graded ring \(R=\sum_{s\in S} R_ s\) satisfies the formula \(J(R)=\sum_{s\in S}(J(R)\cap R_ s)\) if and only if \(S\) is embeddable in a torsion-free abelian group. Reviewer: M.L.Teply (Milwaukee) Cited in 3 Documents MSC: 16W50 Graded rings and modules (associative rings and algebras) 16N20 Jacobson radical, quasimultiplication 20M25 Semigroup rings, multiplicative semigroups of rings 20M14 Commutative semigroups 16S35 Twisted and skew group rings, crossed products Keywords:\(S\)-homogeneous; cancellative; commutative semigroup; Jacobson radical; semigroup-graded ring PDF BibTeX XML Cite \textit{A. V. Kelarev}, Commentat. Math. Univ. Carol. 33, No. 1, 21--24 (1992; Zbl 0765.16013) Full Text: EuDML OpenURL