×

Some remarks on geometric continuity of rational surface patches. (English) Zbl 0817.65013

Summary: The geometric continuous joint between two rational surface patches is considered as a special case of the geometric continuous joint between two hypermanifolds in \(\mathbb{R}^ 4\). Furthermore, a criterion concerning the independence of the equations resulting from the necessary and sufficient conditions for geometric continuity is developed. By solving the continuity conditions for one of the patches, explicit conditions for geometric continuity are determined. These conditions generally provide five free form-parameters such yielding one parameter more than the conditions known up to now.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)
Full Text: DOI

References:

[1] Cauchy, A., Leçons sur les applications du calcul infinitésimal à géométrie, De Bure frères (1826), Librairie du Roi et Bibliothèque du Roi: Librairie du Roi et Bibliothèque du Roi Paris
[2] Degen, W., Some remarks on Bézier curves, Computer Aided Geometric Design, 5, 259-268 (1988) · Zbl 0649.41004
[3] Degen, W., Explicit continuity conditions for adjacent Bézier surface patches, Computer Aided Geometric Design, 7, 181-190 (1990) · Zbl 0711.65008
[4] DeRose, T., Necessary and sufficient conditions for tangent plane continuity of Bézier surfaces, Computer Aided Geometric Design, 7, 165-179 (1990) · Zbl 0807.65008
[5] Farin, G., A construction for visual \(C^1\)-continuity of polynomial surface patches, Computer Graphics and Image Processing, 20, 272-282 (1982) · Zbl 0541.65006
[6] Farin, G., Curves and Surfaces for Computer Aided Geometric Design (1990), Academic Press: Academic Press New York · Zbl 0702.68004
[7] Hoschek, J.; Lasser, D., (Grundlagen der geometrischen Datenverarbeitung (1989), Teubner: Teubner Stuttgart), 277-286 · Zbl 0682.68002
[8] Kruppa, E., Analytische und konstruktive Differentialgeometrie (1957), Springer: Springer Wien · Zbl 0077.15401
[9] Liu, D., \( GC^1\) continuity conditions between two adjacent rational Bézier surface patches, Computer Aided Geometric Design, 7, 151-163 (1990) · Zbl 0713.65010
[10] Liu, D.; Hoschek, J., \( GC^1\)-continuity conditions between adjacent rectangular and triangular Bézier surface patches, Computer-Aided Design, 21, 4, 194-200 (1989) · Zbl 0673.65006
[11] Pottmann, H., Projectively invariant classes of geometric continuity for CAGD, Computer Aided Geometric Design, 6, 307-321 (1989) · Zbl 0684.65011
[12] Reichardt, H., Vorlesungen über Vektor- und Tensorrechnung (1957), Deutscher Verlag der Wissenschaften: Deutscher Verlag der Wissenschaften Berlin · Zbl 0077.14801
[13] Schaal, H., Vektorrechnung und Analytische Geometrie, Vol. 2 (1976), Vieweg: Vieweg Braunschweig · Zbl 0327.15001
[14] Scheffers, G., Anwendung der Differential- und Integralrechnung auf die Geometrie (1923), Walter de Gruyter & Co: Walter de Gruyter & Co Berlin und Leipzig · JFM 33.0594.08
[15] Vinacua, A.; Brunet, P., A construction for \(VC^1\) continuity of rational Bézier patches, (Lyche, T.; Schumaker, L., Mathematical Methods in Computer Aided Geometric Design (1989), Academic Press: Academic Press Boston), 601-611 · Zbl 0675.41032
[16] Wassum, P., Conditions and constructions for \(GC^1-/ GC^2\)-continuity between adjacent integral Bézier surface patches, (Hagen, H., Curve and Surface Modelling (1990), SIAM: SIAM Philadelphia, PA), to be published in · Zbl 0852.68098
[17] Wassum, P., Bedingungen und Konstruktionen zur geometrischen Stetigkeit und Anwendung auf approximative Basistransformationen, Ph.D. thesis (1991), TH Darmstadt
[18] Wassum, P., Geometric continuity between adjacent rational Bézier surface patches (1991), to be published. · Zbl 0852.68098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.