×

zbMATH — the first resource for mathematics

Periodicity and transport from round-off errors. (English) Zbl 0832.58017
Summary: We investigate the effects of round-off errors on quasi-periodic motions in a linear symplectic planar map. By discretizing coordinates uniformly we transform this map into a permutation of \(\mathbb{Z}^2\), and study motions near infinity, which correspond to a fine discretization. We provide numerical evidence that all orbits are periodic and that the average order of the period grows linearly with the amplitude. The discretization induces fluctuations of the invariant of the continuum system. We investigate the associated transport process for time scales shorter than the period, and we provide numerical evidence that the limiting behaviour is a random walk where the step size is modulated by a quasi-periodic function. For this stochastic process we compute the transport coefficients explicitly, by constructing their generating function. These results afford a probabilistic description of motions on a classical invariant torus.

MSC:
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
82C70 Transport processes in time-dependent statistical mechanics
PDF BibTeX Cite
Full Text: DOI EMIS EuDML
References:
[1] Alexeev V. M., Phys. Reports 75 pp 287– (1981)
[2] Apostol T. A., Introduction to analytic number theory (1984)
[3] Artuso R., Phys. Lett. 160 pp 528– (1991)
[4] Artuso R., Nonlinearity 3 pp 325– (1990) · Zbl 0702.58064
[5] Artuso R., Phys. Rev. Lett. 68 pp 3826– (1992)
[6] Bartuccelli M., Physica 39 pp 194– (1989)
[7] Beck C., Physica 25 pp 173– (1987)
[8] Blank M., Russian Math. Surveys 44 pp 1– (1989) · Zbl 0702.58063
[9] Blank M., Chaos 1 pp 347– (1991) · Zbl 0899.58028
[10] Blank M., Dynamical systems and statistical mechanics pp 1– (1991)
[11] Blank M., Physica 78 pp 93– (1994)
[12] Bousch T., Ph.D. thesis, in: ”Sur quelques problèmes de la dynamique holomorphe” (1992)
[13] Chirikov Izrailev F.M., Soviet Scientific Reviews C 2 pp 209– (1981)
[14] David F. N., Combinatorial chance (1962)
[15] Earn D. J. D., Physica 56 pp 1– (1992)
[16] Ford J., Physics Today 36 pp 40– (1983)
[17] Gradsthteyn I. S., Table of integrals, series, and products (1980)
[18] Hammel S. M., J. Complexity 3 pp 136– (1987) · Zbl 0639.65037
[19] Kaneko K., Phys. Lett. 129 pp 9– (1988)
[20] Karney C. F. F., Physica 8 pp 360– (1983)
[21] Keating J. P., Nonlinearity 4 pp 277– (1991) · Zbl 0726.58036
[22] Ya. Khinchin A., Continued fractions (1964)
[23] Knuth D. E., The art of computer programming (1981) · Zbl 0477.65002
[24] Marcus D. A., Number Fields (1977)
[25] Morton P., Proc. London Math. Soc. 68 pp 225– (1994) · Zbl 0792.11043
[26] Percival I. C., Physica 25 pp 105– (1987)
[27] Rannou F., Astron. Astrophys. 31 pp 289– (1974)
[28] Ruelle D., Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics (1978) · Zbl 0401.28016
[29] Scovel C., Phys. Lett. 159 pp 396– (1991)
[30] Vivaldi F., Nonlinearity 5 pp 961– (1992) · Zbl 0767.11049
[31] Wang X.-J., Phys. Rev. 48 pp 728– (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.