×

zbMATH — the first resource for mathematics

\(C(X)\) in the weak topology. (English) Zbl 0834.54006
Summary: Some relations between cardinal invariants of \(X\) and \(C(X)\) are established in the weak topology, where \(C(X)\) is the space of continuous real-valued functions on \(X\) in the compact-open topology.

MSC:
54C30 Real-valued functions in general topology
PDF BibTeX XML Cite
Full Text: DOI EMIS EuDML
References:
[1] R. Engelking, General topology.PWN-Polish Scientific Publishers, Warsaw, 1977.
[2] H. R. Schaefer, Topological vector spaces.Macmillan, N. Y., Collier-Macmillan, London, 1966. · Zbl 0141.30503
[3] N. Dunford and J. L. Schwartz, Linear operators. Part I: General theory. Interscience Publishers, N. Y., London, 1958. · Zbl 0084.10402
[4] J. Guthrie, Ascoly theorems and pseudocharacter of mapping spaces.Bull. Austral. Math. 10(1974), 403–408. · Zbl 0284.54008
[5] A. Grothendieck, Critères generaux de compaticité dans les espaces fonctionels généraux.Amer. J. Math. 74(1952), 165–186.
[6] M. M. Day, Normed linear spaces.Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. · Zbl 0082.10603 · doi:10.1007/978-3-662-25249-9
[7] Z. Semadeni, Banach spaces of continuous functions.PWN-Polish Scientific Publishers, Warsaw, 1971. · Zbl 0225.46030
[8] N. Noble, The density character of function spaces.Proc. Amer. Math. Soc. 42(1974), 228–233. · Zbl 0278.54016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.