Haukkanen, P.; Wang, J. A generalization of Menon’s identity with respect to a set of polynomials. (English) Zbl 0856.11006 Port. Math. 53, No. 3, 331-337 (1996). Kesava Menon established the interesting identity \[ \sum_{\substack{ a\bmod n\\ (a, n)=1 }} (a-1, n)= \varphi (n) \tau (n). \] The authors generalize this to several variables and polynomials with integer coefficients instead of \(a-1\). Reviewer: J.Spilker (Freiburg i.Br.) Cited in 15 Documents MSC: 11A25 Arithmetic functions; related numbers; inversion formulas Keywords:generalization of Menon’s identity; arithmetical functions PDF BibTeX XML Cite \textit{P. Haukkanen} and \textit{J. Wang}, Port. Math. 53, No. 3, 331--337 (1996; Zbl 0856.11006) Full Text: EuDML OpenURL