Dawson, C. Bryan \(L\)-Correspondences: The inclusion \(L^ p (\mu, X)\subset L^ q (\upsilon, Y)\). (English) Zbl 0863.46021 Int. J. Math. Math. Sci. 19, No. 4, 723-726 (1996). Summary: In order to study inclusions of the type \(L^p(\mu,X)\subset L^q(\upsilon,Y)\), we introduce the notion of an \(L\)-correspondence. After proving some basic theorems, we give characterizations of some types of \(L\)-correspondences and offer a conjecture that is similar to an equimeasurability theorem. MSC: 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) 46E40 Spaces of vector- and operator-valued functions 46B99 Normed linear spaces and Banach spaces; Banach lattices Keywords:Lebesgue-Bochner spaces; measurable point mapping; inclusions; \(L\)-correspondence; equimeasurability theorem PDF BibTeX XML Cite \textit{C. B. Dawson}, Int. J. Math. Math. Sci. 19, No. 4, 723--726 (1996; Zbl 0863.46021) Full Text: DOI EuDML OpenURL