Kiguradze, I. On solvability of functional equations in the space of continuous vector functions. (English) Zbl 0866.47044 Mem. Differ. Equ. Math. Phys. 6, 109-112 (1995). We establish sufficient conditions for solvability of the functional equation \[ x(t)=p(x)(t)+q(x)(t),\tag{1} \] where \(p:C([a,b];\mathbb{R}^n)\to C([a,b]; \mathbb{R}^n)\) and \(q:C([a,b];\mathbb{R}^n)\to C([a,b];\mathbb{R}^n)\) are, respectively, linear and nonlinear operators. MSC: 47J05 Equations involving nonlinear operators (general) Keywords:space of continuous vector functions; solvability; functional equation; nonlinear operators PDF BibTeX XML Cite \textit{I. Kiguradze}, Mem. Differ. Equ. Math. Phys. 6, 109--112 (1995; Zbl 0866.47044) Full Text: EuDML EMIS OpenURL